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Today’s lecture

• Autor, Levy, and Murnane (2003)

• Labor market polarization

• The future of work
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What do computers do?

• SBTC literature: computerization associated w/skill upgrading

• But why? What’s the mechanism?

• Autor, Levy, and Murnane (2003): what can computers do?

◦ Computers excel at “rapid execution of stored instructions”
◦ But can fail dramatically at tasks that cannot be codified
◦ Polanyi’s paradox: “We can know more than we can tell.”

• Shifting locus of technological change

◦ ALM period: automated production, bookkeeping, ATMs
◦ Today: driverless cars, OCR, facial recognition, translation
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Substitution and complementarity

[C]omputer capital substitutes for workers in carrying out a
limited and well-defined set of cognitive and manual activities,
those that can be accomplished by following explicit rules (what
we term ”routine tasks”) . . .

[C]omputer capital complements workers in carrying out
problem-solving and communication activities (“nonroutine”
tasks). . . . Provided that routine and nonroutine tasks are
imperfect substitutes, these observations imply measurable
changes in the task composition of jobs.
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Task taxonomy1286 QUARTERLY JOURNAL OF ECONOMICS 

TABLE I 
Predictions of Task Model for the Impact of Computerization on Four 

Categories of Workplace Tasks 

Routine tasks Nonroutine tasks 

Analytic and interactive tasks 

Examples Record-keeping Forming/testing hypotheses 
Calculation Medical diagnosis 

Repetitive customer service Legal writing 

(e.g., bank teller) Persuading/selling 
Managing others 

Computer impact Substantial substitution Strong complementarities 

Manual tasks 

Examples Picking or sorting 
Repetitive assembly 

Computer impact Substantial substitution 

Janitorial services 
? Truck driving 

Limited opportunities for 

substitution or 

complementarity 

I.A. The Demand for Routine and Nonroutine Tasks 

The informal task framework above implies three postulates 
about how computer capital interacts with human labor input. 

Al. Computer capital is more substitutable for human labor 
in carrying out routine tasks than nonroutine tasks. 

A2. Routine and nonroutine tasks are themselves imperfect 
substitutes. 

A3. Greater intensity of routine inputs increases the mar 

ginal productivity of nonroutine inputs. 
To develop the formal implications of these assumptions, we 

write a simple, general equilibrium production model with two 

change impacts job task demands. First, innovations in the organization of pro 
duction reinforce the task-level shifts that we describe above. See Adler [1986], 
Zuboff [1988], Levy and Murnane [1996], Acemoglu [1999], Bresnahan [1999], 
Bartel, Ichniowski, and Shaw [2000], Brynjolfsson and Hitt [2000], Lindbeck and 
Snower [2000], Mobius [2000], Thesmar and Thoenig [2000], Caroli and Van 
Reenen [2001], Fernandez [2001], Autor, Levy, and Murnane [2002], and Bresna 
han, Brynjolfsson, and Hitt [2002] for examples. Second, distinct from our focus on 

process innovations, Xiang [2002] presents evidence that product innovations over 
the past 25 years have also raised skill demands. 

This content downloaded  on Thu, 13 Dec 2012 13:37:22 PM
All use subject to JSTOR Terms and Conditions

(Autor et al., 2003, Table 1)
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The ALM model: production

• Production is a mix of routine and non-routine tasks

Q = (LR + C )1−βLβN

where LR , LN : human labor, C : computers

• All inputs measured in efficiency units

• Key assumption: C and LN are relative complements

◦ Perfect substitution b/w computers and routine labor
◦ Unit-elastic substitution b/w computers and non-routine

(Cobb-Douglas form is just for tractability)

• Computer capital elastically supplied at rental rate ρ

◦ Implies wR = ρ
◦ Cheaper computers =⇒ declines in wR
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The ALM model: occupational choice

• Worker i endowed with efficiencies {ri , ni} ∈ (0, 1]× (0, 1]

• Roy selection: choose routine iff wR ri ≥ wNni

◦ Threshold rule: indifferent if ni
ri

= wR

wN

◦ Generates upward-sloping labor supply in each task

• Cheaper computers reduce routine employment

◦ ρ ↓ =⇒ workers self-select out of routine tasks
◦ Likely to occur both within and between occupations

• Ambiguous impact on observed routine wages

◦ Changes in E[wR ri ] depend on who selects out
◦ Sorting is by comparative advantage, not absolute
◦ General lesson: sweat the selection effect
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Industry-level implications

• Challenge: cost of computers is a single time series

• Solution: cross-industry differences in routine intensity

◦ Effective way to boost degrees of freedom
◦ Alternative: geographic differences (Autor and Dorn 2013)

• Three testable predictions:

1. Routine-intensive industries adopt computers more heavily
2. Computer-adopting industries shift away from routine occupations
3. Computer-adopting occupations shift away from routine tasks
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Data

• Task data from Dictionary of Occupational Titles (DOT)

◦ 1977 Fourth Edition, 1991 Revised Fourth Edition
◦ Occupations scored along 44 dimensions
◦ 12,000 detailed job titles

• Employment counts from Decennial Census and CPS ORGs

◦ Census: 1960, 1970, 1980, 1990; CPS: 1980, 1990, 1998
◦ Weight everything by hours worked

• Lots of crosswalking (see Appendix + my notes)

◦ ∼450 Census Occupation Codes
◦ ∼140 Census Industry Codes

• Nice feature: observe task changes w/in + b/w occupations

◦ A bit unusual: usually know nothing about w/in occ changes
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Five measures of task content

• ALM select five measures on prior grounds:

◦ Non-routine interactive: “direction, control, and planning”
◦ Non-routine analytic: “GED-MATH”
◦ Routine cognitive: “set limits, tolerances, or standards”
◦ Routine manual: “finger dexterity”
◦ Non-routine manual: “eye-hand-foot coordination”

• Embarrassment of riches: are these the right measures?

◦ Variable choices may influence results
◦ Discretion can invite bias
◦ Later literature largely follows ALM conventions

• Verify robustness to other variable choices (using PCA)

• No natural scaling =⇒ convert to “centiles” of 1960 distribution
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Evolution of the aggregate task structure, 1960–1998
1296 QUARTERLY JOURNAL OF ECONOMICS 

- - - Nonroutine analytic 
? ? Nonroutine interactive ?x? Nonroutine manual 

- -* ? Routine cognitive 
- ? - Routine manual 

Figure I 

Trends in Routine and Nonroutine Task Input, 1960 to 1998 

Figure I is constructed using Dictionary of Occupational Titles [1977] task 
measures by gender and occupation paired to employment data for 1960 and 1970 
Census and 1980, 1990, and 1998 Current Population Survey (CPS) samples. 
Data are aggregated to 1120 industry-gender-education cells by year, and each 
cell is assigned a value corresponding to its rank in the 1960 distribution of task 
input (calculated across the 1120, 1960 task cells). Plotted values depict the 
employment-weighted mean of each assigned percentile in the indicated year. See 
Table I and Appendix 1 for definitions and examples of task variables. 

precomputer era?the upward trend in each accelerated thereaf 
ter. By 1998, nonroutine analytic task input averaged 6.8 centiles 
above its 1970 level and nonroutine interactive input averaged 
11.5 centiles above its 1970 level. 

By contrast, the share of the labor force employed in occupa 
tions intensive in routine cognitive and routine manual tasks 
declined substantially. Between 1970 and 1998, routine cognitive 
tasks declined 8.7 centiles and routine manual tasks declined by 
4.3 centiles. Notably, these declines reversed an upward trend in 
both forms of routine task input during the 1960s. For routine 

cognitive tasks, this trend reversed in the 1970s, and for routine 
manual tasks, the trend halted in the 1970s and reversed in the 
1980s. 

This content downloaded  on Thu, 13 Dec 2012 13:37:22 PM
All use subject to JSTOR Terms and Conditions

(Autor et al., 2003, Figure 1)
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Overall trends in task inputs

• Secular growth in non-routine interactive/cognitive occupations

◦ Already evident in “pre-computer” 1960s
◦ Accelerates in subsequent decades, decelerates after 2000

(Beaudry, Green, and Sand 2016)

• Declining employment in routine-intensive occupations

◦ Reversal of upward trend in the 1960s
◦ Declines continue in the 2000s (Autor and Price 2013)

• Secular decline in non-routine manual tasks

◦ A little surprising given growth in low-skill services
◦ “Neither supportive nor at odds with our model”

• Similar trends among men and among women

• Predominantly driven by within-industry shifts
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Rightward shifts in non-routine interactive tasks

1300 QUARTERLY JOURNAL OF ECONOMICS 

Percentiles of 1960 Distribution 
-1980 employment (1977 task measures) ?*?1998 employment (1991 task measures) 

? ?1998 employment (1977 task measures) 

Figure II 
Smoothed Differences between the Density of Nonroutine Task Input 

in 1960 and Subsequent Years 

Figure II is constructed using Dictionary of Occupational Titles (DOT) task 
measures by gender and occupation paired to employment data from 1960, 1980, 
and 1998 Census and Current Population Survey samples. Plots depict the change 
in the share of employment between 1960 and the indicated year at each 1960 
percentile of task input. All series use DOT 1977 data paired to employment data 
for the indicated year except for series marked "1991 task measures," which use 
task data from 1991 DOT. See Table I and Appendix 1 for definitions and 
examples of task variables. 

This content downloaded  on Thu, 13 Dec 2012 13:37:22 PM
All use subject to JSTOR Terms and Conditions

(Autor et al., 2003, Figure 2b)
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Leftward shifts in routine cognitive tasks
SKILL CONTENT OF TECHNICAL CHANGE 1301 

-0 008 
Percentiles of 1960 Distribution 

-1980 employment (1977 task measures) ?*?1998 employment (1991 task measures) 
? ?1998 employment (1977 task measures) 

Figure II (continued) 

Both the nonroutine analytic and nonroutine interactive task 
measures show strong within-industry growth in each decade 

following the 1960s. Moreover, the rate of within-industry growth 
of each input increases in each subsequent decade. Although, as 
noted above, nonroutine analytic input also increased during the 

1960s, Table II shows that this was primarily a cross-industry 

This content downloaded  on Thu, 13 Dec 2012 13:37:22 PM
All use subject to JSTOR Terms and Conditions

SKILL CONTENT OF TECHNICAL CHANGE 1301 

-0 008 
Percentiles of 1960 Distribution 

-1980 employment (1977 task measures) ?*?1998 employment (1991 task measures) 
? ?1998 employment (1977 task measures) 

Figure II (continued) 

Both the nonroutine analytic and nonroutine interactive task 
measures show strong within-industry growth in each decade 

following the 1960s. Moreover, the rate of within-industry growth 
of each input increases in each subsequent decade. Although, as 
noted above, nonroutine analytic input also increased during the 

1960s, Table II shows that this was primarily a cross-industry 

This content downloaded  on Thu, 13 Dec 2012 13:37:22 PM
All use subject to JSTOR Terms and Conditions

(Autor et al., 2003, Figure 2c)
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Computerization and the task structure

• Striking . . . but time-series evidence

• Next: look at industry-level changes in task usage:

∆Tjkτ = α + φ∆Cj + εjkτ

• Estimate separately by decade

◦ Static predictor: ∆Cj = 1984–1997 change in computer usage
◦ Regard 1960s as pre-treatment (placebo)
◦ Expect acceleration as computerization intensifies

• Complement w/contemporaneous data on computer investments

∆Tjkτ = α + δ70−80 + δ80−90 + δ90−98 + ψCI jτ + θKI jτ + εjkτ
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Computerizing industries shift from routine to non-routine1304 QUARTERLY JOURNAL OF ECONOMICS 

TABLE III 
Computerization and Industry Task Input, 1960-1998 

Dependent Vakiable: 10 x Annual within-Industry Change in Task Input, 
Measured in Percentiles of 1960 Task Distribution 

1. 1990- 2. 1980- 3. 1970- 4. 1960 
1998 1990 1980 1970 

A. A Nonroutine A Computer use 

analytic 1984-1997 

Intercept 

B. A Nonroutine 

interactive 

C. A Routine 

cognitive 

D. A Routine 
manual 

R2 

Weighted mean A 
A Computer use 

1984-1997 
Intercept 

R2 

Weighted mean A 
A Computer use 

1984-1997 
Intercept 

R2 

Weighted mean A 
A Computer use 

1984-1997 
Intercept 

R2 

Weighted mean A 

12.04 

(4.74) 
0.07 

(1.00) 
0.04 
2.45 

14.78 

(5.48) 
1.02 

(1.15) 
0.05 
3.94 

-17.57 

(5.54) 
-0.11 

(1.17) 
0.07 

-3.57 
-24.72 

(5.77) 
1.38 

(1.22) 
0.12 

-3.50 

14.02 

(4.97) 
-0.66 

(1.03) 
0.05 
2.05 

17.21 

(6.32) 
1.46 

(1.31) 
0.05 
4.79 

-13.94 

(5.72) 
0.63 

(1.19) 
0.04 

-2.07 
-5.94 

(5.64) 
-0.16 

(1.17) 
0.01 

-1.31 

9.11 

(4.17) 
-0.26 

(0.86) 
0.03 
1.48 

10.81 

(5.71) 
2.35 

(1.17) 
0.03 
4.42 

-11.00 

(5.40) 
1.63 

(1.11) 
0.03 

-0.47 
-6.56 

(4.84) 
2.09 

(0.99) 
0.01 

0.84 

7.49 

(5.28) 
-0.55 

(1.05) 
0.01 
0.83 
7.55 

(6.64) 
0.10 

(1.32) 
0.01 
1.49 

-3.90 

(4.48) 
1.78 

(0.89) 
0.01 
1.06 
4.15 

(3.50) 
0.85 

(0.70) 
0.01 
1.62 

n is 140 consistent CIC industries. Standard errors are in parentheses. Each column of panels A-D 
presents a separate OLS regression of ten times the annual change in industry-level task input between the 
endpoints of the indicated time interval (measured in centiles of the 1960 task distribution) on the annual 
percentage point change in industry computer use during 1984-1997 (mean 0.193) and a constant. Computer 
use is the fraction of industry workers using a computer at their jobs, estimated from the October 1984 and 
1997 CPS samples. Estimates are weighted by mean industry share of total employment in FTEs over the 
endpoints of the years used to form the dependent variable. Samples used are Census 1960, 1970, and 1980 
and CPS MORG 1980, 1990, and 1998. See Table I and Appendix 1 for definitions and examples of task 
variables. 

tasks is economically large and statistically significant at conven 
tional levels in each of the three most recent decades. 

Panels C and D of the table provide analogous estimates for 
the two routine task measures. As predicted by the conceptual 

model, the relationships between industry computerization and 

changes in routine task input are uniformly negative in the 

1970s, 1980s, and 1990s. These relationships are also economi 

This content downloaded  on Thu, 13 Dec 2012 13:37:22 PM
All use subject to JSTOR Terms and Conditions

(Autor et al., 2003, Table 3)
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Similar pattern within education groups
SKILL CONTENT OF TECHNICAL CHANGE 1311 

TABLE V 
Computerization and Industry Task Input 1980-1998: 

Overall and by Education Group 
Dependent Variable: 10 x Annual Change in Quantiles of Task Measure, 

Measured in Percentiles of 1960 Task Distribution 

1. A Nonroutine 
analytic 

2. A Nonroutine 
interactive 

3. A Routine 
cognitive 

4. A Routine 
manual 

A. Aggregate within-industry change 

A Computer use 
1984-1997 

Intercept 

Weighted mean task A 

12.95 
(3.68) 

-0.33 
(0.77) 
2.20 

15.97 
(4.32) 
1.27 

(0.90) 
4.39 

-15.84 
(4.73) 
0.38 
(0.99) 

-2.71 

-14.32 
(4.73) 
0.54 
(0.99) 

-2.25 

B. Within industry: High school dropouts 

A Computer use 
1984-1997 

Intercept 

Weighted mean task A 

A Computer use 
1984-1997 

Intercept 

Weighted mean task A 

4.64 
(6.07) 

-2.51 
(1.26) 

-1.61 

C. 

11.92 
(8.73) 

-4.39 
(1.82) 

-2.07 

-2.64 
(7.95) 
0.02 
(1.66) 

-0.49 

-8.85 
(6.76) 
1.11 

(1.41) 
-0.62 

Within industry: High school graduates 

0.04 13.49 -28.18 -25.50 
(4.17) (5.40) (6.13) (6.05) 

-1.49 1.07 1.55 0.48 
(0.87) (1.13) (1.28) (1.26) 

-1.48 3.70 -3.95 -4.49 

D. Within industry: Some college 

A Computer use 
1984-1997 

Intercept 

Weighted mean task A 

A Computer use 
1984-1997 

Intercept 

Weighted mean task A 

7.95 
(5.03) 

-1.88 
(1.05) 

-0.33 

18.14 
(5.54) 

-0.58 
(1.15) 
2.96 

-15.68 
(5.27) 
0.35 
(1.10) 

-2.71 

E. Within industry: College graduates 

1.61 
(3.42) 
0.25 
(0.71) 
0.57 

5.57 
(3.35) 
0.10 
(0.70) 
2.22 

-0.78 
(4.85) 

-0.96 
(1.01) 

-1.48 

17.77 
(5.61) 
1.39 

(1.17) 
-2.08 

-4.46 
(5.70) 

-0.12 
(1.19) 

-1.98 

F. Decomposition into within and between education group components 

Explained task A 2.52 3.11 -3.09 -2.79 
Within educ groups (%) 23.7 77.9 91.7 111.1 
Between educ groups (%) 76.3 22.1 8.3 -11.1 

n in panels A-E is 140,139,140,140, and 139 consistent CIC industries. Standard errors are in parentheses. 
Each column of panels A-E presents a separate OLS regression often times the annual change in industry-level 
task input for the relevant education group (measured in centiles of the 1960 task distribution) during 1980-1998 
on the annual percentage point change in industry computer use during 1984-1997 (weighted mean 0.198) and 
a constant. Estimates are weighted by mean industry share of total employment (in FTEs) in 1980 and 1988. 
Industries with no employment in the relevant educational category in either 1980 or 1998 are excluded. Data 
sources are CPS MORG 1980 and 1998 and DOT 77 job task measures. The "explained'' component in Panel F is 
the within-industry change in the task measure predicted by computerization in regression models in Panel A. See 

Table I and Appendix 1 for definitions and examples of task variables. 

This content downloaded  on Thu, 13 Dec 2012 13:37:22 PM
All use subject to JSTOR Terms and Conditions
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TABLE V 
Computerization and Industry Task Input 1980-1998: 

Overall and by Education Group 
Dependent Variable: 10 x Annual Change in Quantiles of Task Measure, 

Measured in Percentiles of 1960 Task Distribution 

1. A Nonroutine 
analytic 

2. A Nonroutine 
interactive 

3. A Routine 
cognitive 

4. A Routine 
manual 

A. Aggregate within-industry change 

A Computer use 
1984-1997 

Intercept 

Weighted mean task A 

12.95 
(3.68) 

-0.33 
(0.77) 
2.20 

15.97 
(4.32) 
1.27 

(0.90) 
4.39 

-15.84 
(4.73) 
0.38 
(0.99) 

-2.71 

-14.32 
(4.73) 
0.54 
(0.99) 

-2.25 

B. Within industry: High school dropouts 

A Computer use 
1984-1997 

Intercept 

Weighted mean task A 

A Computer use 
1984-1997 

Intercept 

Weighted mean task A 

4.64 
(6.07) 

-2.51 
(1.26) 

-1.61 

C. 

11.92 
(8.73) 

-4.39 
(1.82) 

-2.07 

-2.64 
(7.95) 
0.02 
(1.66) 

-0.49 

-8.85 
(6.76) 
1.11 

(1.41) 
-0.62 

Within industry: High school graduates 

0.04 13.49 -28.18 -25.50 
(4.17) (5.40) (6.13) (6.05) 

-1.49 1.07 1.55 0.48 
(0.87) (1.13) (1.28) (1.26) 

-1.48 3.70 -3.95 -4.49 

D. Within industry: Some college 

A Computer use 
1984-1997 

Intercept 

Weighted mean task A 

A Computer use 
1984-1997 

Intercept 

Weighted mean task A 

7.95 
(5.03) 

-1.88 
(1.05) 

-0.33 

18.14 
(5.54) 

-0.58 
(1.15) 
2.96 

-15.68 
(5.27) 
0.35 
(1.10) 

-2.71 

E. Within industry: College graduates 

1.61 
(3.42) 
0.25 
(0.71) 
0.57 

5.57 
(3.35) 
0.10 
(0.70) 
2.22 

-0.78 
(4.85) 

-0.96 
(1.01) 

-1.48 

17.77 
(5.61) 
1.39 

(1.17) 
-2.08 

-4.46 
(5.70) 

-0.12 
(1.19) 

-1.98 

F. Decomposition into within and between education group components 

Explained task A 2.52 3.11 -3.09 -2.79 
Within educ groups (%) 23.7 77.9 91.7 111.1 
Between educ groups (%) 76.3 22.1 8.3 -11.1 

n in panels A-E is 140,139,140,140, and 139 consistent CIC industries. Standard errors are in parentheses. 
Each column of panels A-E presents a separate OLS regression often times the annual change in industry-level 
task input for the relevant education group (measured in centiles of the 1960 task distribution) during 1980-1998 
on the annual percentage point change in industry computer use during 1984-1997 (weighted mean 0.198) and 
a constant. Estimates are weighted by mean industry share of total employment (in FTEs) in 1980 and 1988. 
Industries with no employment in the relevant educational category in either 1980 or 1998 are excluded. Data 
sources are CPS MORG 1980 and 1998 and DOT 77 job task measures. The "explained'' component in Panel F is 
the within-industry change in the task measure predicted by computerization in regression models in Panel A. See 

Table I and Appendix 1 for definitions and examples of task variables. 

This content downloaded  on Thu, 13 Dec 2012 13:37:22 PM
All use subject to JSTOR Terms and Conditions

(Autor et al., 2003, Table 5)
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De-routinization within computerizing occupations
TA

BLE V
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A
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B. 
A
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C

. 
A

 R
outine 
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D

. 
A

 R
outine 

m
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(1) 
(2) 

(3) 
(1) 

(2) 
(3) 

(1) 
(2) 

(3) 
(1) 

(2) 
(3) 

C
O

 
h-* 
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? 1 8 

A
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1984-1997 
A
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ollege 

grad 
em

p. 
1984-1997 

A
 H

S 
grad 

em
p. 

1984-1997 
A

 Fem
ale 

em
p. 

1984-1997 

Intercept 

R
2 

W
eighted 

m
ean 

A
 

2.94 

(1.84) 

-0.92 

(0.40) 
0.01 

3.57 

(1.92) 
-4.79 

(5.54) 
2.83 

(3.78) 

-0.91 

(0.41) 
0.01 

-0.39 

4.02 

(2.06) 
-4.83 

(5.54) 
3.09 

(3.81) 
-2.37 

(3.94) 
-0.95 

(0.41) 
0.01 

5.70 

(1.88) 

-0.46 

(0.41) 
0.02 

5.86 

(1.97) 
-4.47 

(5.68) 
-0.19 

(3.88) 

-0.42 

(0.42) 
0.02 
0.58 

7.08 

(2.11) 
-4.58 

(5.67) 
0.52 

(3.90) 
-6.47 

(4.03) 
-0.52 

(0.42) 
0.03 

-18.18 

(3.29) 

0.56 

(0.71) 
0.06 

-16.56 

(3.41) 
22.59 

(9.86) 
16.97 

(6.73) 

0.14 

(0.72) 
0.08 

-2.76 

-18.48 

(3.65) 
22.76 

(9.85) 
15.86 

(6.77) 
10.14 

(6.99) 
0.30 

(0.73) 
0.08 

1.74 

(2.89) 

0.42 

(0.63) 
0.00 

0.83 

(3.01) 
16.07 

(8.70) 
-10.42 

(5.94) 

0.70 

(0.64) 
0.01 
0.74 

0.37 

(3.23) 
-16.03 

(8.71) 
-10.70 

(5.99) 
2.47 

(6.19) 
0.74 

(0.64) 
0.01 

n is 470 consistent 
three-digit C
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C
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(C
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) occupations. 
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are 0.183,0.017, 
-0.015, 

and 0.017, 
respectively. 

O
m
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school dropout. Estim
ates 

are w
eighted 
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Implications for relative skill demands

• Do shifts in task demand explain rising demand for college labor?

◦ More ambitious (“heroic exercises” come at the end of a paper)

• Posit a “fixed coefficients” mapping from tasks to skills

College sharej = α +
4∑

k=1

πk · T k
j + εj

• Estimate across industries in midpoint of sample period

• Predicted change in aggregate college share:

̂∆College share1970−1988 =
4∑

k=1

π̂k · ∆̂T
k

1970−1988

where ∆̂T
k

1970−1988 are computer-induced task shifts

18



Task shifts can explain much of the shift in skill demands
SKILL CONTENT OF TECHNICAL CHANGE 1319 

TABLE VII 
(CONTINUED) 

1. 1970- 2. 1980- 3. 1990- 4. 1970- 5. 1980- 6. 1980- 7. 1980 
1980 1990 1998 1998 1998 1998 1998 

extensive extensive extensive extensive extensive intensive extensive + 

margin margin margin margin margin margin intensive 

D. 10X annual changes in college-equivalent share of employment in percentage 
points, predicted by impact of computerization on task input (panel B) 

NIPA computer investment measure CPS computer use measure 

Nonroutine 
tasks 

Routine 
tasks 

All tasks 

0.40 

0.29 

0.70 

0.65 

0.48 

1.12 

1.10 

0.81 

1.91 

0.69 

0.51 

1.19 

1.41 

0.80 

2.21 

0.40 

1.04 

1.44 

1.81 

1.84 

3.65 

E. Estimated log demand shifts for college-equivalent/noncollege-equivalent 
labor 1970-1998 (100 x annual log changes) 

Using constant-elasticity of substitution model to estimate changes in college 
demand 

a = 0.0 
a = 1.4 
a = 2.0 

4.99 2.53 
3.95 4.65 
3.50 5.56 

2.25 3.33 
2.76 3.86 
2.98 4.09 

2.41 
3.81 
4.41 

Using task model to predict changes in college demand 

Total task A 

(panel C) 
Predicted by 

computer 
ization 

(panel D) 

1.23 

0.64 

1.29 

0.70 

1.43 

0.98 

1.31 

0.76 

1.56 

1.39 

-0.06 

0.91 

1.51 

2.29 

Panels C and D: Implied employment share changes for college-equivalent labor (in percentage points) 
are calculated as the inner product of observed or predicted changes in task input from panels A and B and 
the coefficient vector from a fixed coefficient model of educational input. For extensive margin task shifts, this 
coefficient vector is estimated from a regression of college equivalent employment (in FTEs) in 140 consistent 
CIC industries on the five DOT measures of industry task input (in centiles) and a constant using the 1980 
MORG sample. For intensive margin task shifts, the coefficient vector is estimated from a regression of 
college equivalent employment in 470 COC occupations on the five DOT measures of occupational task input 
(in centiles) and a constant using the 1984 CPS sample. College-equivalents labor is defined as all workers 

with college or greater education plus half of those with some college. 
Panel E: Fixed coefficients log relative demand shifts are calculated as the change in the log ratio of 

college-equivalent/noncollege-equivalent employment using the initial (1970, 1980, or 1990) college-equiva 
lent/equivalent employment share in full-time equivalents and the implied percentage point change in this 
share from Panels C and D. 

Constant Elasticity of Substitution (CES) implied relative demand shifts for college-equivalent labor are 
calculated following Autor, Katz, and Krueger [1998] using a CES aggregate production function with two 
inputs, college and high school equivalents, and an elasticity of substitution denoted by o\ See Table II of 

Autor, Katz, and Krueger for details. 
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(Autor et al., 2003, Table 7)
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The polarization of the labor market

• Related phenomenon: labor market polarization

◦ Hollowing-out of middle-paying occupations
◦ Non-monotonic changes in wage structure

• One leading explanation: routine-biased technical change

• Likely augmented by globalization (Ebenstein et al., 2014)

◦ Import competition from low-wage countries
◦ Offshoring of production tasks
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Routine tasks were once prevalent in middle-paying jobs
entirely explained by price changes. Because composition
overexplains the former phenomenon and underexplains the
latter, it is accurate to say that composition can “fully
explain” the aggregate trend in residual inequality after
1988. But when upper- and lower-tail inequality are con-
sidered separately—as seems appropriate given their sub-
stantial divergence—composition does not appear a satisfy-
ing explanation for either.

V. What Explains the Polarization of Earnings
Growth?

Following the monotonic surge of inequality from 1979
to 1987, changes in the U.S. wage distribution subsequently
“polarized,” with a strong, persistent rise in inequality in the
upper half of the distribution and a slowing then slight
reversal of inequality in the lower half of the distribution.
This polarization is seen in overall inequality, in residual
inequality, and in educational wage differentials. We believe
the evidence is clear that this polarization is not primarily
explained by mechanical effects of labor force composition
or by episodic, nonmarket events such as the falling real
minimum wage of the 1980s. But canonical supply-demand
models also fail to provide a satisfying explanation for wage
polarization since the late 1980s.

One potentially viable hypothesis focuses on changing
demand for job tasks and their link to computerization. As
argued by Autor, Levy, and Murnane (2003, ALM hereafter)
and amplified by Goos and Manning (2007), Spitz-Oener
(2006), Autor, Katz, and Kearney (2006), and Dustmann,
Ludsteck, and Schönberg (2007), skill-biased technical
change is probably an insufficiently nuanced name for the
shifts in skill demands that were induced or abetted by the
rapid price declines in computer technology over the last
three decades. In the ALM task framework, computerization
has nonmonotone impacts on the demand for skill through-
out the earnings distribution: sharply raising demand for the
cognitive and interpersonal skills used by educated profes-
sionals and managers (“abstract tasks”); reducing demand
for clerical and routine analytical and mechanical skills that
comprised many middle-educated white collar and manu-
facturing production jobs (“routine tasks”).27 Somewhat
paradoxically, computerization has probably had little direct
impact on the demand for the nonroutine manual skills
(“manual tasks”) used in many “low-skilled” service jobs
such as health aides, security guards, orderlies, cleaners, and
servers. Because the interpersonal and environmental adapt-
ability demanded by these manual tasks has proven extraor-
dinarily difficult to computerize (to date), these manual
activities may in fact grow in importance as a share of labor
input.28 The ALM framework suggests that computerization
(among other forces such as international outsourcing) may

have raised demand for skill among higher-educated work-
ers, depressed skill demands for “middle-educated” work-
ers, and left the lower echelons of the wage distribution
comparatively unscathed.29 Goos and Manning (2007) label
this process a “polarization of work,” and argue that it may
have contributed to a hollowing out of the wage distribution
in the United Kingdom from 1975 to 2000. Spitz-Oener
(2006) and Dustmann, Ludsteck, and Schönberg (2007)
report a similar polarization of employment for the former
West Germany for 1979 to 1999.30

To illustrate the relevance of shifts in task demands for
changes in skill demands, we link data on task intensity by
occupation from the Dictionary of Occupational Titles to
data on skill level by occupation in the 1980 Census. In this
analysis, occupational skill level is measured by the mean
years of education of an occupation’s workforce (weighting
workers by their annual hours worked). Figure 10 uses a
locally weighted smoothing regression to plot task intensity
by occupational skill for each of the three broad task
categories above: abstract, routine, and manual tasks.31 Task

27 A related earlier model along these lines is developed in Juhn (1994).
28 See Levy and Murnane (2004) for numerous paradigmatic examples.

The fact that computerization causes manual tasks to grow as a share of
labor input may be understood as a form of Baumol’s disease.

29 Welch (2000) and Weinberg (2000) argue that these technical changes
are particularly likely to have been favorable to demand for female labor.

30 Acemoglu (1999) offers an alternative theory of job polarization based
on endogenous changes in production techniques as a response to a rise in
the availability of skilled labor.

31 The task intensity data are constructed by matching Census 1980 data
by occupation and gender with task measures from the Dictionary of
Occupational Titles (DOT ). Task intensities by occupational skill percen-
tile are plotted using a locally weighted smoothing regression with
bandwidth 0.5 (that is, one-half of one percentile). Details on the process-
ing and matching of DOT task measures to occupations are given in Autor,
Levy, and Murnane (2003). The abstract task category we use in figure 10
is the arithmetic average of ALM’s “nonroutine cognitive/analytic” and
“nonroutine cognitive/interactive” category and, similarly, our routine task
category is the average of ALM’s “routine manual” and “routine cogni-
tive” categories. Our manual category is equivalent to ALM’s “nonroutine
manual” category.

FIGURE 10.—TASK INTENSITY BY OCCUPATIONAL SKILL PERCENTILE,
DEFINED AS OCCUPATIONAL RANK (IN PERCENTILES) IN MEAN YEARS

OF SCHOOLING

Task intensity by occupational percentile is plotted using a locally weighted smoothing regression with
bandwidth 0.5 (i.e., one-half of one percentile). Occupational skill is measured as the employment-
weighted percentile rank of an occupation’s mean years of education in the Census IPUMS 1980 5%
extract. Mean education in each occupation is calculated using workers’ hours of annual labor supply
times the Census sampling weight. Data on task intensity by occupation is from the Dictionary of
Occupational Titles and compiled by Autor, Levy, and Murnane (2003). Task intensities are measured as
percentiles of the baseline distribution of job tasks in 1960. Thus, an occupation with the median intensity
of routine task input in 1960 would receive a score of 50.

THE REVIEW OF ECONOMICS AND STATISTICS318

(Autor et al., 2008, Figure 10)
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The hollowing-out of middle-paying jobs
(See Hunt and Nunn 2019 for a critique of this occupation-based approach)

Skills, Tasks and Technologies: Implications for Employment and Earnings 1071

Smoothed changes in employment by occupational skill percentile 1979-2007
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Figure 10 Source: Census IPUMS 5 percent samples for years 1980, 1990, and 2000, and Census
American Community Survey for 2008. All occupation and earningsmeasures in these samples refer to
prior year’s employment. The figure plots log changes in employment shares by 1980occupational skill
percentile rank using a locally weighted smoothing regression (bandwidth 0.8 with 100 observations),
where skill percentiles are measured as the employment-weighted percentile rank of an occupation’s
mean log wage in the Census IPUMS 1980 5 percent extract. The mean log wage in each occupation is
calculated using workers’ hours of annual labor supply times the Census sampling weights.Consistent
occupation codes for Census years 1980, 1990, and 2000, and 2008 are fromAutor and Dorn (2009).

The figure reveals a pronounced “twisting” of the distribution of employment
across occupations over three decades, which becomes more pronounced in each
period. During the 1980s (1979-1989), employment growth by occupation was nearly
monotone in occupational skill; occupations below the median skill level declined as
a share of employment and occupations above the median increased. In the subsequent
decade, this monotone relationship gave way to a distinct pattern of polarization. Relative
employment growth was most rapid at high percentiles, but it was also modestly positive
at low percentiles (10th percentile and down) and modestly negative at intermediate
percentiles. In contrast, during the most recent decade for which Census/ACS data are
available, 1999-2007, employment growth was heavily concentrated among the lowest
three deciles of occupations. In deciles four through nine, the change in employment
shares was negative, while in the highest decile, almost no change is evident. Thus, the
disproportionate growth of low education, low wage occupations became evident in the
1990s and accelerated thereafter.27

27 Despite this apparent monotonicity, employment growth in one low skill job category—service occupations—was
rapid in the 1980s (Autor and Dorn, 2010). This growth is hardly visible in Fig. 10, however, because these occupations
were still quite small.

(Acemoglu and Autor, 2011, Figure 10)
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Occupational polarization in the United StatesSkills, Tasks and Technologies: Implications for Employment and Earnings 1073

Percent change in employment by occupation, 1979-2009

–

Figure 12 Source: May/ORG CPS files for earnings years 1979-2009. The data include all persons
aged 16-64who reported employment in the sample referenceweek, excluding those employed by the
military and in agricultural occupations. Occupations are assigned to 326 occupation groups that are
consistent over the given time period. All non-military, non-agricultural occupations are assigned to
one of ten broad occupations presented in the figure.

For comparison, Fig. 11 also plots the unweighted average change in the share of
national employment in high, middle, and low wage occupations in all 16 European
Union economies alongside a similar set of occupational shift measures for the United
States. Job polarization appears to be at least as pronounced in the European Union as in
the United States.

Figure 12 studies the specific changes in occupational structure that drive job
polarization in the United States. The figure plots percentage point changes in
employment levels by decade for the years 1979-2009 for 10 major occupational groups
encompassing all of US non-agricultural employment. We use the May/ORG data so as
to include the two recession years of 2007 through 2009 (separately plotted).29

The 10 occupations summarized in Fig. 12 divide neatly into three groups. On the
left-hand side of the figure are managerial, professional and technical occupations. These
are highly educated and highly paid occupations. Between one-quarter and two-thirds
of workers in these occupations had at least a four-year college degree in 1979, with the
lowest college share in technical occupations and the highest in professional occupations
(Table 4). Employment growth in these occupations was robust throughout the three
decades plotted. Even in the deep recession of 2007 through 2009, during which the

29 The patterns are very similar, however, if we instead use the Census/ACS data, which cover the period 1959 through
2007 (see Tables 3a and 3b for comparison).

(Acemoglu and Autor, 2011, Figure 12)
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Occupational polarization throughout Europe1072 Daron Acemoglu and David Autor

Change in employment shares by occupation 1993-2006 in 16 European countries
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Figure 11 Source:DataonEUemploymentare fromGoosetal. (2009).USdataare fromtheMay/ORG
CPS files for years 1993-2006. The data include all persons aged 16-64 who reported employment in
the sample reference week, excluding those employed by themilitary and in agricultural occupations.
Occupations are first assigned to 326occupation groups that are consistent over the given timeperiod.
These occupations are then grouped into three broad categories by wage level.

This pattern of employment polarization is not unique to the United States, as is
shown in Fig. 11. This figure, based on Table 1 of Goos et al. (2009), depicts the change
in the share of overall employment accounted for by three sets of occupations grouped
according to average wage level—low, medium, and high—in each of 16 European
Union countries during the period 1993 through 2006.28 Employment polarization is
pronounced across the EU during this period. In all 16 countries depicted, middle wage
occupations decline as a share of employment. The largest declines occur in France and
Austria (by 12 and 14 percentage points, respectively) and the smallest occurs in Portugal
(1 percentage point). The unweighted average decline in middle skill employment across
countries is 8 percentage points.

The declining share of middle wage occupations is oVset by growth in high and low
wage occupations. In 13 of 16 countries, high wage occupations increased their share of
employment, with an average gain of 6 percentage points, while low wage occupations
grew as a share of employment in 11 of 16 countries. Notably, in all 16 countries, low
wage occupations increased in size relative to middle wage occupations, with a mean gain
in employment in low relative to middle wage occupations of 10 percentage points.

28 The choice of time period for this figure reflects the availability of consistent Harmonized European Labour Force data.
The ranking of occupations by wage/skill level is assumed identical across countries, as necessitated by data limitations.
Goos, Manning and Salomons report that the ranking of occupations by wage level is highly comparable across EU
countries.

(Acemoglu and Autor, 2011, Figure 11; adapted from Goos et al. 2009)
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Wage polarization in the 1990s United States
1068 Daron Acemoglu and David Autor

Changes in male & female log hourly wages by percentile  
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Figure 9 Source: May/ORG CPS data for earnings years 1973-2009. The data are pooled using three-
year moving averages (i.e. the year 1974 includes data from years 1973, 1974 and 1975). For each
year, the 5th through 95th percentiles of log hourly wages are calculated for all workers, excluding
the self-employed and those employed in military occupations. The log wage change at the median
is normalized to zero in each time interval.

(Acemoglu and Autor, 2011, Figure 9a)
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The future of work

• Lots of debate about AI-induced job losses

◦ Machine learning (ML), advanced robotics

• Hard to predict the future: easier to predict the past!

• One approach: Frey and Osborne (2017)

◦ Hand-code 70 occupations’ susceptibility to automation
◦ Bottlenecks: perception, creativity, social intelligence
◦ Use ML techniques to extrapolate to remaining occupations

• Attention-getting conclusion:

According to our estimate, 47% of total US employment is in
the high risk category, meaning that associated occupations are
potentially automatable over some unspecified number of years,
perhaps a decade or two.

26



Frey and Osborne (2017)
(Nifty data visualization. Note the clever color cues: green jobs safe, red jobs at risk.)

C. Frey, M. Osborne / Technological Forecasting & Social Change 114 (2017) 254–280 267
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Fig. 3. Employment affected by computerisation. Note: The distribution of BLS 2010 occupational employment over the probability of computerisation, along with the share
in low, medium and high probability categories. Note that the total area under all curves is equal to total US employment. For ease of visualisation, the plot was produced by
smoothing employment over a sliding window of width 0.1 (in probability).

social intelligence, are unlikely to become subject to computerisation
in the near future.

The low susceptibility of engineering and science occupations to
computerisation, on the other hand, is largely due to the high degree
of creative intelligence they require. The O*NET tasks of mathe-
maticians, for example, involve “developing new principles and new
relationships between existing mathematical principles to advance
mathematical science” and “conducting research to extend mathe-
matical knowledge in traditional areas, such as algebra, geometry,
probability, and logic.” Hence, while it is evident that computers are
entering the domains of science and engineering, our predictions
implicitly suggest strong complementarities between computers and
labour in creative science and engineering occupations; although it
is possible that computers will fully substitute for workers in these
occupations over the long-run. This is in line with the findings of
Ingram and Neumann (2006), showing a largely persistent increase
in the returns to cognitive abilities since the 1980s. We also note
that the predictions of our model are strikingly in line with the

Table 3
Variable distributions.

Variable Probability of computerisation

Low Medium High

Assisting and caring for others 48±20 41±17 34±10
Persuasion 48±7.1 35±9.8 32±7.8
Negotiation 44±7.6 33±9.3 30±8.9
Social perceptiveness 51±7.9 41±7.4 37±5.5
Fine arts 12±20 3.5±12 1.3±5.5
Originality 51±6.5 35±12 32±5.6
Manual dexterity 22±18 34±15 36±14
Finger dexterity 36±10 39±10 40±10
Cramped work space 19±15 37±26 31±20

Note: Distributions are represented by their mean and standard deviation.

technological trends we observe in the automation of knowledge
work, even within occupational categories. For example, we find that
paralegals and legal assistants – for which computers already substi-
tute – in the high risk category. At the same time, lawyers, which rely
on labour input from legal assistants, are in the low risk category.
Thus, for the work of lawyers to be fully automated, engineering bot-
tlenecks to creative and social intelligence will need to be overcome,
implying that the computerisation of legal research will complement
the work of lawyers in the medium term.

To complete the picture of what recent technological progress is
likely to mean for the future of employment, we plot the average
median wage of occupations by their probability of computerisa-
tion. We do the same for skill level, measured by the fraction of
workers having obtained a bachelor’s degree, or higher educational
attainment, within each occupation. Fig. 4 reveals that both wages
and educational attainment exhibit a strong negative relationship
with the probability of computerisation. We note that this predic-
tion implies a truncation in the current trend towards labour market
polarisation, with growing employment in high and low-wage occu-
pations, accompanied by a hollowing-out of middle-income jobs.
Rather than reducing the demand for middle-income occupations,
which has been the pattern over the past decades, our model predicts
that computerisation will mainly substitute for low-skill and low-
wage jobs in the near future. By contrast, high-skill and high-wage
occupations are the least susceptible to computer capital.

Our findings were robust to the choice of the 70 occupations that
formed our training data. This was confirmed by the experimental
results tabulated in Table A2: a GP classifier trained on half of the
training data was demonstrably able to accurately predict the labels
of the other half, over one hundred different partitions. That these
predictions are accurate for many possible partitions of the training
set suggests that slight modifications to this set are unlikely to lead
to substantially different results on the entire dataset.
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social intelligence, are unlikely to become subject to computerisation
in the near future.

The low susceptibility of engineering and science occupations to
computerisation, on the other hand, is largely due to the high degree
of creative intelligence they require. The O*NET tasks of mathe-
maticians, for example, involve “developing new principles and new
relationships between existing mathematical principles to advance
mathematical science” and “conducting research to extend mathe-
matical knowledge in traditional areas, such as algebra, geometry,
probability, and logic.” Hence, while it is evident that computers are
entering the domains of science and engineering, our predictions
implicitly suggest strong complementarities between computers and
labour in creative science and engineering occupations; although it
is possible that computers will fully substitute for workers in these
occupations over the long-run. This is in line with the findings of
Ingram and Neumann (2006), showing a largely persistent increase
in the returns to cognitive abilities since the 1980s. We also note
that the predictions of our model are strikingly in line with the

Table 3
Variable distributions.

Variable Probability of computerisation

Low Medium High

Assisting and caring for others 48±20 41±17 34±10
Persuasion 48±7.1 35±9.8 32±7.8
Negotiation 44±7.6 33±9.3 30±8.9
Social perceptiveness 51±7.9 41±7.4 37±5.5
Fine arts 12±20 3.5±12 1.3±5.5
Originality 51±6.5 35±12 32±5.6
Manual dexterity 22±18 34±15 36±14
Finger dexterity 36±10 39±10 40±10
Cramped work space 19±15 37±26 31±20

Note: Distributions are represented by their mean and standard deviation.

technological trends we observe in the automation of knowledge
work, even within occupational categories. For example, we find that
paralegals and legal assistants – for which computers already substi-
tute – in the high risk category. At the same time, lawyers, which rely
on labour input from legal assistants, are in the low risk category.
Thus, for the work of lawyers to be fully automated, engineering bot-
tlenecks to creative and social intelligence will need to be overcome,
implying that the computerisation of legal research will complement
the work of lawyers in the medium term.

To complete the picture of what recent technological progress is
likely to mean for the future of employment, we plot the average
median wage of occupations by their probability of computerisa-
tion. We do the same for skill level, measured by the fraction of
workers having obtained a bachelor’s degree, or higher educational
attainment, within each occupation. Fig. 4 reveals that both wages
and educational attainment exhibit a strong negative relationship
with the probability of computerisation. We note that this predic-
tion implies a truncation in the current trend towards labour market
polarisation, with growing employment in high and low-wage occu-
pations, accompanied by a hollowing-out of middle-income jobs.
Rather than reducing the demand for middle-income occupations,
which has been the pattern over the past decades, our model predicts
that computerisation will mainly substitute for low-skill and low-
wage jobs in the near future. By contrast, high-skill and high-wage
occupations are the least susceptible to computer capital.

Our findings were robust to the choice of the 70 occupations that
formed our training data. This was confirmed by the experimental
results tabulated in Table A2: a GP classifier trained on half of the
training data was demonstrably able to accurately predict the labels
of the other half, over one hundred different partitions. That these
predictions are accurate for many possible partitions of the training
set suggests that slight modifications to this set are unlikely to lead
to substantially different results on the entire dataset.

(Frey and Osborne, 2017, Figure 3)
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The end of work?

• Are we on the brink of mass technological unemployment?

◦ Similar angst throughout history (e.g., Luddites)

• Maybe—but don’t fall prey to the “lump of labor” fallacy!

◦ Scale effects within industries
◦ Demand effects between industries

• Plus: not all non-employment is unemployment

◦ A world without work is a wealthy world (Keynes 1930)
◦ But big concerns about distribution
◦ See Autor (JEP 2015)
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Cautionary tale: scale effects in bank branching
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tently in developed economies—and these losses are offset by 
growth in other occupations. 

Yet all is not well with the workforce. The average worker 
has seen stagnant wages, and employers report difficulty hir-
ing workers with needed technical skills. As technology cre-
ates new opportunities, it creates new demands as well, and 
training institutions are slow to adapt. Although some econo-
mists deny that there are too few workers with needed skills, 
a careful look at the evidence below suggests we face a sig-
nificant challenge building a workforce with the knowledge 
needed to use new technologies. Until training institutions 
and labor markets do catch up, the benefits of information 
technology will be limited and not widely shared. 

Automation ≠ unemployment
I focus on information technology because this technology 
has brought dramatic change to a large portion of the work-
force. Some people see computers automating work and 
conclude that technological unemployment is inevitable. A 
recent study (Frey and Osborne, 2013) looks at how com-
puters can perform different job tasks. It concludes that 47 
percent of U.S. employment is in occupations that are at high 
risk of being automated during the next decade or so. Does 
that mean nearly half of all jobs are about to be eliminated?

Not likely. Just because computers can perform some job 
tasks does not mean that jobs will be eliminated. Consider 
bank tellers. Automated teller machines (ATMs) were first 
installed in the United States and other developed economies 
in the 1970s. These machines handle some of the most com-
mon tasks bank tellers performed, such as dispensing cash 
and taking deposits. Starting in the mid-1990s, banks rapidly 
increased their use of ATMs; over 400,000 are installed in the 
United States alone today. 

One might expect such automation to decimate the ranks 
of bank tellers, but in fact the number of bank teller jobs 
did not decrease as the ATMs were rolled out (see Chart 1). 
Instead, two factors combined to preserve teller jobs. 

First, ATMs increased the demand for tellers because they 
reduced the cost of operating a bank branch. Thanks to the ATM, 
the number of tellers required to operate a branch office in the 
average urban market fell from 20 to 13 between 1988 and 2004. 
But banks responded by opening more branches to compete for 
greater market share. Bank branches in urban areas increased 43 
percent. Fewer tellers were required for each branch, but more 
branches meant that teller jobs did not disappear. 

Second, while ATMs automated some tasks, the remain-
ing tasks that were not automated became more valuable. As 
banks pushed to increase their market shares, tellers became 
an important part of the “relationship banking team.” Many 
bank customers’ needs cannot be handled by machines—par-
ticularly small business customers’. Tellers who form a per-
sonal relationship with these customers can help sell them 
on high-margin financial services and products. The skills of 
the teller changed: cash handling became less important and 
human interaction more important. 

In short, the economic response to automation of bank tell-
ers’ work was much more dynamic than many people would 

expect. This is nothing new. Automation during the Industrial 
Revolution did not create massive technological unemploy-
ment. During the 19th century, for example, power looms 
automated 98 percent of the labor needed to weave a yard of 
cloth. Yet the number of factory weaving jobs increased over 
this period. Less labor cost per yard meant a lower price in 
competitive markets; a lower price meant sharply increased 
demand for cloth; and greater demand for cloth increased the 
demand for weavers despite the drop in labor needed per yard. 
Furthermore, while technology automated more and more 
weaving tasks, weavers’ remaining skills, such as those needed 

to coordinate work across multiple looms, became increasingly 
valuable. Weavers’ wages rose sharply compared with those of 
other workers during the late 19th century. 

The economy responds dynamically in other ways as well. 
In some cases, new jobs are created in related occupations. 
Desktop publishing meant fewer typographers but more 
graphic designers; automated company phone systems meant 
fewer switchboard operators but more receptionists who took 
over the human interaction tasks switchboard operators previ-
ously performed. In each case, the new jobs required new and 
different skills. Sometimes new jobs appear in entirely unre-
lated sectors. For example, as agricultural jobs disappeared, 
new jobs arose in the manufacturing and service sectors. 

Thus computer automation does not necessarily imply 
imminent and massive technological unemployment; new 
technology can also increase the demand for workers with new 
skills. To measure the actual effect of computer technology on 
jobs overall, we must look at major occupational groups to 

Bessen, corrected, 1/20/2015

Chart 1

Dispensing jobs 
As more ATMs were installed in the United States, the number 
of tellers employed did not drop.
(thousands) 

Sources: Ruggles and others, Integrated Public Use Microdata Series: Version 5.0; Bureau of 
Labor Statistics, Occupational Employment Survey; and Bank for International Settlements, 
Committee on Payment and Settlement Systems, various publications.
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(Bessen, 2015, Chart 1)
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Concluding thoughts

• Task approach increasingly popular—why?

◦ Occupations matter, but there are tons of them
◦ Tasks offer dimension reduction
◦ Tight links to theory

• Lots of fruitful angles

◦ Rising returns to social skills (Deming 2017)
◦ New job titles (Lin 2011; Autor and Salomons, in prep.)

• Challenges:

◦ Time-consistent measures of job characteristics
◦ Time-consistent occupational/industry codes
◦ Potential cherry-picking of measures
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