Lecture Note 2: A "Crash Course" in Optimization

ECN 100B: Intermediate Microeconomic Theory

Fall 2019

Professor Brendan Price UC Davis Economics

The big picture

- Economic analysis usually involves two basic steps:
 - Predict how a person or firm will behave in a certain situation
 - Predict how behavior changes depending on the circumstances
- Today, we'll develop the basic tools for each of these steps:
 - To predict behavior, we solve an **optimization problem**
 - To see how behavior changes, we do comparative statics

1. Overview

Some terminology

- objective function: what I want to maximize (or minimize)
 - For consumers: utility function; for firms: profit function
 - Gives a "score" to every option available
- choice variable: whatever I get to choose
 - · How much output to produce, whether to go skiing
 - o Sometimes there is one choice variable, sometimes more
- choice set: the list of available options
 - Output: any non-negative real number
 - Skiing: yes or no
- parameters: outside factors that I take as "given"
 - Output: market price (if I'm a price-taker)
 - Skiing: temperature, snowfall

Optimization with a finite number of options

• Sometimes there are only a few options

- Should I buy trip insurance for my next flight?
- Should Apple open a store in downtown Davis?
- In these cases:
 - Evaluate the objective function for each option
 - Choose the option with the best "score"
 - o If there are ties, the decision-maker is indifferent
- We'll see examples of this soon

Optimization with an infinite number of options

- But usually we study problems with infinitely many options
 - How many units to produce
 - $\circ~$ How many hours to work
- In these cases:
 - Write the objective function in terms of the choice variable
 - Use calculus to find the max (or min) of the objective function

2. Writing Down the Problem

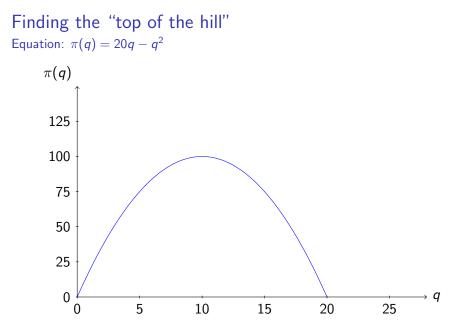
Example: soybean production

- Let's revisit a problem from last lecture:
 - Soybean farm in a competitive market
 - Faces (constant) price p = 20
 - Has cost function $C(q) = q^2$
 - How much should it produce?
- Starting point: write down the optimization problem

$$\max_{q \ge 0} \pi(q) = \underbrace{20q}_{\text{revenue}} - \underbrace{q^2}_{\text{cost}}$$

- "max" means "choose a non-negative value of q" $_{q\geq 0}$
 - $\circ~$ Throughout ECN 100B, quantities can never be negative
 - For simplicity, however, I will usually just write "max"

3. Finding a Candidate Optimum



First-order conditions (FOCs)

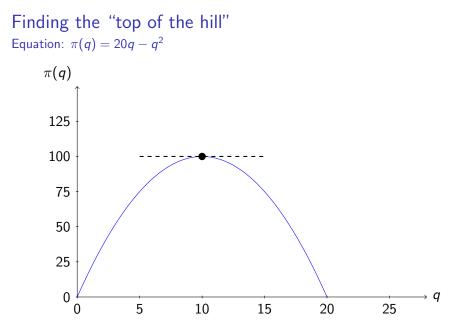
• To figure out where profits are maximized, we take the FOC:

- Differentiate the objective function by the choice variable
- Treat everything else as a constant
- Set the (first) derivative equal to zero

• So, to solve:
$$\max_{q} \pi(q) = 20q - q^2$$

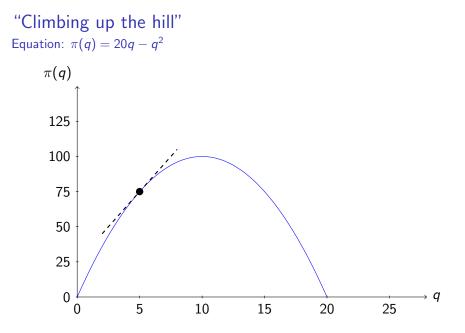
$$rac{d}{dq}\pi(q) = \underbrace{20-2q}_{ ext{marginal profit}} = 0 \implies q^* = 10$$

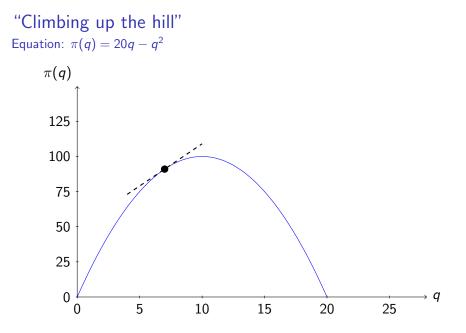
• The FOC finds points where the objective function is "flat"

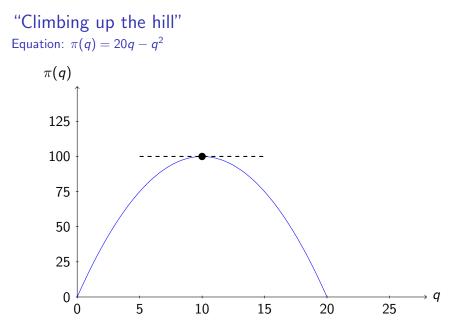


An economic perspective

- π is maximized when there is **no profitable deviation**
 - · Profitable deviation: a change in behavior that increases profits
- Why can't q = 5 be the optimal choice?
 - Marginal revenue = 20
 - $\circ \text{ Marginal cost} = 2 \times 5 = 10$
 - $\circ \implies Marginal profit = 20 10 = 10$
 - $\circ \implies$ We can increase π by increasing q
- Why can't q = 15 be optimal?
 - Marginal revenue = 20
 - $\circ \text{ Marginal cost} = 2 \times 15 = 30$
 - $\circ \implies Marginal profit = 20 30 = -10$
 - $\circ \implies$ We can increase π by *decreasing* q
- At the optimum, such improvements are impossible







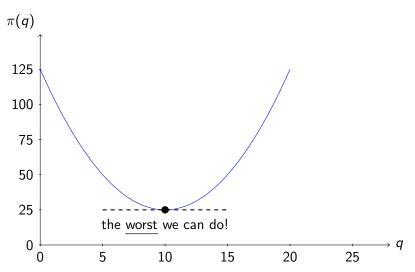
4. Verifying a Candidate Optimum

Wait: is it really the right answer?

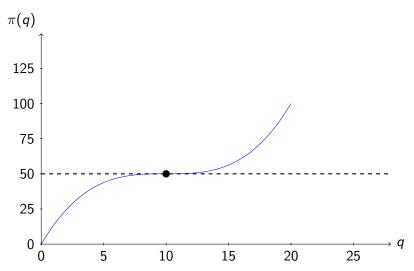
- Solving the FOC doesn't always get us the right answer
 - Sometimes it gives us a *minimum*, not a *maximum*
 - $\circ~$ And sometimes the right answer is a "corner solution"
- Have to verify that our "candidate optimum" is really optimal

Here, q = 10 is the global maximum Equation: $\pi(q) = 20q - q^2$ $\pi(q)$ the best we can do! → q

But here, q = 10 is the global minimum Equation: $\pi(q) = q^2 - 20q + 125$



And here, q = 10 is a saddle point (neither max nor min) Equation: $\pi(q) = \frac{1}{20}(q-10)^3 + 50$



The second-order condition

• How can we tell if a candidate maximum is really a maximum?

• Check the second derivative:

- If $\frac{d^2\pi(q)}{dq^2} < 0$ at $q = q^*$: locally concave \implies local maximum • If $\frac{d^2\pi(q)}{dq^2} < 0$ for all q: globally concave \implies global maximum
- This is called the "second-order condition" (or SOC)
 If we're looking for a <u>minimum</u>, we need d²π(q)/dq² > 0

• For
$$\pi(q) = 20q - q^2$$
:
 $\frac{d^2\pi(q)}{dq^2} = -2 < 0 \implies q^* = 10$ is a global maximum

5. Weird Answers

Sometimes the optimal choice doesn't exist

- Here's a problem with no (finite) solution:
 - A soybean farm faces a competitive price: p = 20
 - Constant marginal cost of production: C(q) = 18q
- What should the firm do?
 - Profit function: $\pi(q) = 20q 18q = 2q$
 - $\circ \ {\sf Set} \ q = \infty \implies {\sf make infinite profit}$
 - So there is no well-defined solution

Sometimes there are lots of optimal choices

- Let's change the problem slightly:
 - Competitive price: p = 20
 - Cost of production: C(q) = 20q
- What should the firm do?
 - Profit function: $\pi(q) = 20q 20q = 0$
 - Whatever q it chooses, it makes zero profit
 - So every choice of q is an optimal choice

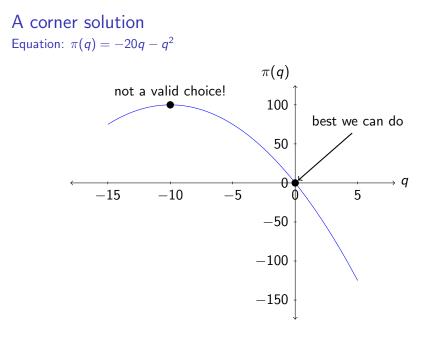
And sometimes it's a "corner solution"

• Suppose that p = 20 and that costs are $C(q) = 40q + q^2$

• Profit function: $\pi(q) = 20q - 40q - q^2 = -20q - q^2$

• FOC:
$$-20 - 2q = 0 \implies q^* = -10$$

- But the firm can't produce negative output!
- So, what should the firm do?
 - Marginal profit: $\frac{d\pi(q)}{dq} = -20 2q < 0$
 - The more it produces, the more money it loses
 - $\,\circ\,$ So it should produce as little as possible: $q^*=0$



Corner solutions vs. interior solutions

- How many hours should I sleep each day?
 - Choice set: h must be in the interval [0, 24]
 - Corner solution: choosing $h^* = 0$ or $h^* = 24$
 - Interior solution: choosing h^* for which $0 < h^* < 24$
- Corner solutions may seem like "trick questions"
- But people and firms are at corner solutions all the time
 - I own zero Ferraris ☺
 - Apple has stopped selling the iPhone 7
 - Many CVS pharmacies are open 24 hours per day
- So we will see them a lot in this course

6. Two Choice Variables

Optimization with two choice variables

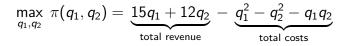
- So far, we've been analyzing problems with one choice variable
- In the real world, we often make multiple interrelated decisions
 - Should I go to college? If so, what should I major in?
 - How many iPhones should Apple make, and how many iPads?
- Suppose we have two choice variables, say q_1 and q_2
 - We indicate this by writing "max" instead of "max" a_{a_1,a_2}
 - We will have one first-order condition for each choice variable
 - This gives us a system of two equations in two unknowns
 - We can solve this system of equations to obtain q_1^* and q_2^*

Example: a two-crop farm

Step 1: write down the optimization problem

• A farm sells a mixture of corn and squash at competitive prices

- Price of corn (good 1): $p_1 = 15$
- Price of squash (good 2): $p_2 = 12$
- Cost of production: $C(q_1, q_2) = q_1^2 + q_2^2 + q_1q_2$
- We write the optimization problem as:



Example: a two-crop farm

Step 2: take the first-order conditions

• Here is the problem again:

$$\max_{q_1,q_2} \pi(q_1,q_2) = 15q_1 + 12q_2 - q_1^2 - q_2^2 - q_1q_2$$

- Next, we partially differentiate profits with respect to q₁
 Notation for partial derivatives:
 [∂]/_{∂q1}π(q₁, q₂)

 Put simply: take the derivative while holding q₂ constant
- Taking the FOCs for goods 1 and 2, respectively:

$$egin{aligned} &rac{\partial}{\partial q_1} \pi(q_1,q_2) = 15 - 2q_1^* - q_2^* = 0 \ &rac{\partial}{\partial q_2} \pi(q_1,q_2) = 12 - 2q_2^* - q_1^* = 0 \end{aligned}$$

Example: a two-crop farm

Step 3: solve the system of equations

• We now have a system of 2 equations in 2 unknowns:

$$15 - 2q_1^* - q_2^* = 0$$

 $12 - 2q_2^* - q_1^* = 0$

• Isolate q_2^* in the first equation:

$$q_2^* = 15 - 2q_1^*$$

• Then plug this into the second equation and solve:

$$egin{aligned} 12-2(15-2q_1^*)-q_1^*=0 &\Longrightarrow q_1^*=6 \ &\Longrightarrow q_2^*=15-2(6)=3 \end{aligned}$$

7. Comparative Statics

Learning about causal relationships

- Lots of important questions are about **causal relationships**
 - How would putting tariffs on Chinese goods affect US GDP?
 - How would a tax on Juul affect cigarette consumption?
- To answer these questions, we perform comparative statics
 - Express market outcomes as a function of parameters
 - $\circ~$ See how outcomes change when the parameters change

Example: corn and squash

- Suppose we want to know:
 - If the price of corn falls, will our farm grow more squash?
 - Will it stop growing corn?
- One approach: experiment with specific values
 - $\,\circ\,$ Re-do the problem with $p_1=12$ instead of $p_1=15$
 - We'd find that q_1^* falls from 6 to 4 and q_2^* rises from 3 to 4
- But this approach does not work very well
 - May have to repeat this procedure multiple times
 - And it's hard to interpret the results
- Instead: solve the problem with p_1 and p_2 unspecified

Example: corn and squash

1. Rewrite the problem in terms of p_1 and p_2 :

$$\max_{q_1,q_2} \ \pi(q_1,q_2) = p_1 q_1 + p_2 q_2 - q_1^2 - q_2^2 - q_1 q_2$$

2. Take the two FOCs:

$$egin{aligned} &rac{\partial}{\partial q_1} \pi(q_1,q_2) = p_1 - 2q_1^* - q_2^* = 0 \ &rac{\partial}{\partial q_2} \pi(q_1,q_2) = p_2 - 2q_2^* - q_1^* = 0 \end{aligned}$$

Example: corn and squash

3. Solve for q_1^* and q_2^* :

$$egin{aligned} q_1^*(p_1,p_2) &= rac{2}{3}p_1 - rac{1}{3}p_2 \ q_2^*(p_1,p_2) &= rac{2}{3}p_2 - rac{1}{3}p_1 \end{aligned}$$

- 4. Need to make sure these are valid choices!
 - $\begin{array}{l} \circ \ \ \mbox{For} \ \ q_1^* \geq 0, \ \mbox{we need} \ \ \frac{2}{3}p_1 \frac{1}{3}p_2 \geq 0 \implies p_1 \geq \frac{1}{2}p_2 \\ \circ \ \ \mbox{For} \ \ q_2^* \geq 0, \ \ \mbox{we need} \ \ \frac{2}{3}p_2 \frac{1}{3}p_1 \geq 0 \implies p_2 \geq \frac{1}{2}p_1 \\ \end{array}$
- 5. Now we can do comparative statics:
 - Squash output is increasing in price of squash: \$\frac{\partial q_2^*}{\partial p_2} = \frac{2}{3} > 0\$
 Squash output is decreasing in price of corn: \$\frac{\partial q_2^*}{\partial p_1} = -\frac{1}{3} < 0\$
 If \$p_1 < \frac{1}{2}p_2\$, the farm stops growing corn \$(q_1^* = 0)\$

- Discussion section: perfect competition, effects of a tax
- Thursday 10/03: monopoly pricing (Lecture Note 3)
- Friday 10/04: Homework #1 due