
Organizing Data

for Economic Research

Part 2: Handling Data

Brendan M. Price*
UC Davis

November 14, 2019

*Copyright 2019 by Brendan M. Price. All rights reserved. Website: www.brendanmichaelprice.com.
This presentation includes figures based on joint work with John Coglianese of the Federal Reserve Board.
The views expressed in this presentation are those of the authors and do not necessarily represent the views
or policies of the Board of Governors of the Federal Reserve System or its staff.

https://www.brendanmichaelprice.com

This lecture

Roadmap:

1. Coding practices
2. Data cleaning
3. Data validation
4. Data exploration

A bit more Stata-centric than last time

1

Recommended reading, redux

Principles, practices, and object lessons:

“Code & Data for the Social Sciences: A Practitioner’s Guide”
— Matthew Gentzkow and Jesse M. Shapiro

Filling in many of the details:

The Workflow of Data Analysis Using Stata
— J. Scott Long

Nuts and bolts of metrics commands:

Microeconometrics Using Stata
— A. Colin Cameron and Pravin K. Trivedi

2

coding practices

Writing good code*

1. The better you know the language, the more choices you have.

2. Balance brevity, readability, and computational efficiency.
There are real tradeoffs, but stick to the Pareto frontier.

3. Comment heavily, but keep comments up to date.

4. Employ visual cues to clarify logical structure.

5. Automation pays for itself sooner than you expect.

6. Looping is usually better than repetition, but not always.

7. Store parameter values in macros: do not hard-code them.

8. Use consistent naming and typographical conventions.

9. Seek creative solutions, but don’t reinvent the wheel.

10. Don’t leave code in disrepair unless you’ll be back tomorrow.

*This does not come close to being exhaustive. Coding is a lifelong art. 3

Learn the lingo

The more commands you know, the more versatile you’ll be

– Read help files often
– Read other people’s code
– Read Statalist posts
– Talk to classmates/colleagues

(Periodically) skim the Stata reference manuals

– Data management (direct download)
– Programming (direct download)
– Functions (direct download)
– Graphics (direct download)

Google liberally

4

https://www.stata.com/manuals/d/index2.html
https://www.stata.com/manuals/p/index2.html
https://www.stata.com/manuals/fn/index2.html
https://www.stata.com/manuals/g/index2.html

A cursory Google search turned up this

frequently used
commands are
highlighted in yellow

use "yourStataFile.dta", clear
load a dataset from the current directory

import delimited "yourFile.csv", /*
 */ rowrange(2:11) colrange(1:8) varnames(2)

import a .csv file
webuse set "https://github.com/GeoCenter/StataTraining/raw/master/Day2/Data"
webuse "wb_indicators_long"

set web-based directory and load data from the web

import excel "yourSpreadsheet.xlsx", /*
 */ sheet("Sheet1") cellrange(A2:H11) firstrow

import an Excel spreadsheet

Import Data
sysuse auto, clear

load system data (Auto data)
for many examples, we
use the auto dataset.

display price[4]
display the 4th observation in price; only works on single values

levelsof rep78
display the unique values for rep78

Explore Data

duplicates report
finds all duplicate values in each variable

describe make price
display variable type, format,
and any value/variable labels

ds, has(type string)
lookfor "in."

search for variable types,
variable name, or variable label

isid mpg
check if mpg uniquely
identifies the data

plot a histogram of the
distribution of a variable

count if price > 5000
count

number of rows (observations)
Can be combined with logic

inspect mpg
show histogram of data,
number of missing or zero
observations

summarize make price mpg
print summary statistics
(mean, stdev, min, max)
for variables

codebook make price
overview of variable type, stats,
number of missing/unique values

gsort price mpg gsort –price –mpg
sort in order, first by price then miles per gallon

(descending)(ascending)

list make price if price > 10000 & !missing(price) clist ...
list the make and price for observations with price > $10,000

(compact form)
open the data editor

browse Ctrl 8+or
Missing values are treated as the largest
positive number. To exclude missing values,
ask whether the value is less than "."

histogram mpg, frequency

assert price!=.
verify truth of claim

Summarize Data

bysort rep78: tabulate foreign
for each value of rep78, apply the command tabulate foreign

collapse (mean) price (max) mpg, by(foreign)
calculate mean price & max mpg by car type (foreign)

replaces data

tabstat price weight mpg, by(foreign) stat(mean sd n)
create compact table of summary statistics

table foreign, contents(mean price sd price) f(%9.2fc) row
create a flexible table of summary statistics

displays stats
for all dataformats numbers

tabulate rep78, mi gen(repairRecord)
one-way table: number of rows with each value of rep78

create binary variable for every rep78
value in a new variable, repairRecord

include missing values

tabulate rep78 foreign, mi
two-way table: cross-tabulate number of observations
for each combination of rep78 and foreign

Create New Variables

see help egen
for more options

egen meanPrice = mean(price), by(foreign)
calculate mean price for each group in foreign

pctile mpgQuartile = mpg, nq = 4
create quartiles of the mpg data

generate totRows = _N bysort rep78: gen repairTot = _N
_N creates a running count of the total observations per group

bysort rep78: gen repairIdx = _ngenerate id = _n
_n creates a running index of observations in a group

generate mpgSq = mpg^2 gen byte lowPr = price < 4000
create a new variable. Useful also for creating binary
variables based on a condition (generate byte)

Change Data Types

destring foreignString, gen(foreignNumeric)
gen foreignNumeric = real(foreignString)

1
encode foreignString, gen(foreignNumeric) "foreign"

"1"
"1"

Stata has 6 data types, and data can also be missing:

byte
true/false

int long float double
numbers

string
words

missing
no data

To convert between numbers & strings:

1
decode foreign , gen(foreignString)
tostring foreign, gen(foreignString)
gen foreignString = string(foreign)

"foreign"

"1"
"1"

recast double mpg
generic way to convert between types

if foreign != 1 & price >= 10000
make

Chevy Colt
Buick Riviera
Honda Civic
Volvo 260 1 11,995

1 4,499
0 10,372
0 3,984

foreign price

Arithmetic Logic
+ add (numbers)

combine (strings)
subtract

* multiply

/ divide
^ raise to a power

or|
not! or ~
and&

Basic Data Operations

if foreign != 1 | price >= 10000
make

Chevy Colt
Buick Riviera
Honda Civic
Volvo 260 1 11,995

1 4,499
0 10,372
0 3,984

foreign price

> greater than
>= greater or equal to

<= less than or equal to
< less thanequal==

== tests if something is equal
= assigns a value to a variable

not
equalor

!=
~=

Basic Syntax
All Stata commands have the same format (syntax):

bysort rep78 : summarize price if foreign == 0 & price <= 9000, detail

[varlist1:] [varlist2] [=exp] [] [range] [weight] [filename] [,options]
function: what are
you going to do

to varlists?

condition: only
apply the function
if something is true

apply to
specific rows

apply
weights

save output as
a new variable

pull data from a file
(if not loaded)

special options
for command

apply the
command across
each unique
combination of
variables in
varlist1

column to
apply

command to
In this example, we want a detailed summary
with stats like kurtosis, plus mean and median

To find out more about any command – like what options it takes – type command

pwd
print current (working) directory

cd "C:\Program Files (x86)\Stata13"
change working directory

dir
display filenames in working directory

dir *.dta
List all Stata data in working directory

capture log close
close the log on any existing do files

log using "myDoFile.txt", replace
create a new log file to record your work and results

Set up

search mdesc
find the package mdesc to install

ssc install mdesc
install the package mdesc; needs to be done once

packages contain
extra commands that
expand Stata’s toolkit

underlined parts
are shortcuts –
use "capture"
or "cap"

Ctrl D+
highlight text in .do file,
then ctrl + d executes it
in the command line

clear
delete data in memory

Useful Shortcuts

Ctrl 8
open the data editor

+

F2
describe data

cls clear the console (where results are displayed)

PgUp PgDn scroll through previous commands

Tab autocompletes variable name after typing part

Ctrl 9
open a new .do file

+keyboard buttons

Data Processing
Cheat Sheetwith Stata 15

For more info see Stata’s reference manual (stata.com)

Tim Essam (tessam@usaid.gov) • Laura Hughes (lhughes@usaid.gov)
follow us @StataRGIS and @flaneuseks

inspired by RStudio’s awesome Cheat Sheets (rstudio.com/resources/cheatsheets) updated June 2016
CC BY 4.0

geocenter.github.io/StataTraining
Disclaimer: we are not affiliated with Stata. But we like it.

Search term: “useful stata commands”. Find more “Stata cheat sheets” here. 5

https://geocenter.github.io/StataTraining/portfolio/01_resource/

Some useful Stata commands

Master the workhorse commands
append, assert, bysort, capture, collapse, compress, confirm, decode/encode,
egen, expand, fillin, format, joinby, label, levelsof, local, merge,
preserve/restore, reshape, reshape, tabstat, tempfile/tempvar, twoway, xpose

Discover commands you may not already know
adopath, clonevar, coefplot, distinct, duplicates, estimates, estout/esttab,
export/import, file write/file read, findit, gsort, labmask, lookfor, nlcom,
notes, postfile/post, recast, sample, savesome, shell, spmap, ssc, timer, unab

Humdrum commands can have unexpected functionality
– use [varlist] if can load a subset of vars./obs.
– describe using can list variables without loading a dataset
– display can do subtle string transformations
– rename can batch-rename in surprisingly versatile ways

ssc install gtools: lightning-fast versions of key commands*

*Note of thanks to Sergio Correia for ftools and Mauricio Cáceres Bravo for gtools. 6

Special notation and hidden gems

Develop proficiency in all of the following:

– System variables (n and N): help n

– Factor variables: help fvvarlist

– Time-series operators: help tsvarlist

– Date/time variables: help datetime

– String functions: help string functions

– Extended macro functions: help extended fcn

– Regular expressions: regexm()/regexs()/regexr()
– Return codes: return, creturn, ereturn
– Matrix commands: help matrix, help mata

– Graphical templates: help scheme

Many of these are easy to overlook

7

Be brief

Strunk and White, The Elements of Style:

Omit needless words. Vigorous writing is concise. A sentence should
contain no unnecessary words, a paragraph no unnecessary sentences,
for the same reason that a drawing should have no unnecessary lines
and a machine no unnecessary parts. This requires not that the writer
make all his sentences short, or that he avoid all detail and treat his
subjects only in outline, but that every word tell.

Concise code is:

– Easier to read
– Easier to debug
– Easier to maintain
– Easier to recycle

8

...but not overly brief

1. This is good:

gen sep_type = .

replace sep_type = 1 if sep == 1 & ump == 1

replace sep_type = 2 if sep == 1 & nlf == 1

2. This is more compact, but it’s worse:

gen sep_type = 1 if sep == 1 & ump == 1

replace sep_type = 2 if sep == 1 & nlf == 1

3. The one-line solution is inadvisable:

gen sep_type = ump + 2 * nlf if sep == 1

4. This is a bit better, but I’d still go with door #1:

gen sep_type = (1 * ump) + (2 * nlf) if sep == 1

9

Documentation plays multiple roles

Part 1: a sound file structure offers meta-documentation

Within scripts, documentation serves three roles:

1. Delineate blocks of related code
2. Explain what the code is doing
3. Flag outstanding issues

Given rationale #1, it’s okay to state the obvious:

* Restrict to the period 1984-2013

keep if inrange(year(dofm(tm)), 1984, 2013)

* Restrict to prime-age observations

keep if inrange(age, 25, 54)

Syntax highlighting and documentation are complements

10

Employ visual cues

Start each script with an explanatory header
*------------------------------------

* Project: "Jabberwocky"

* Author: Lewis Carroll

*

* Description: Survival analysis.

* Last updated: 1871

*------------------------------------

Use comments to delineate sections of code
*------------------------------------

* Check Jabberwock vital signs

*------------------------------------

Indent subordinate code (loops, if-thens, etc.)

if jabberwock == "slain" {
disp "O frabjous day! Callooh! Callay!"

}

11

Parallel structure aids legibility

Misaligned code is hard to read & error-prone
gen emp share = 100 * emp/(emp + unemp + nilf)

gen unemp share = 10 * unemp/(emp + unemp + nilf)

gen nilf share = 100 * nilf/(emp + unemp + nilf)

Helps to give parallel variables names of equal length
gen emp share = 100 * emp/(emp + ump + nlf)

gen ump share = 100 * ump/(emp + ump + nlf)

gen nlf share = 100 * nlf/(emp + ump + nlf)

A similar trick makes it easy to see what regressors are included:*
reg ‘yvar’ ‘summer’ ‘if’ ‘wt’, ‘vce’

reg ‘yvar’ ‘summer’ ‘married’ ‘if’ ‘wt’, ‘vce’

reg ‘yvar’ ‘summer’ ‘anykids’ ‘if’ ‘wt’, ‘vce’

reg ‘yvar’ ‘summer’ ‘married’ ‘anykids’ ‘if’ ‘wt’, ‘vce’

*Thanks to Monica Rodriguez-Guevara for showing me this trick. 12

data cleaning

Data cleaning in a nutshell

Here’s the gameplan:

1. Store pristine source data in $projdir/dta/src.
2. Write code to import source data into Stata.
3. [Weeks of painstaking labor.]
4. Save “clean” .dta files.
5. Impose sample restrictions, process further.
6. Save estimation samples.

In some cases, might want to jump right to sample files

13

Importing data

Wrong approach: manual conversion from source to .dta

– Interactive conversion using StatTransfer

– Copy-and-paste using Stata’s edit command (yikes)

Right approach: codified conversion from within a .do file

– Creates a paper trail
– No need to save a redundant .dta version of original data
– Often need to download updated extracts or similar files

One of these usually suffices: import, insheet, infix

If Stata can’t handle it, try using shell or python code

14

Unique identifiers

As soon as you load a source file, identify unique identifiers

– Useful command: ‘‘isid [varlist]’’

– Code crashes if false, continues if true

Every .dta file should have a unique identifier

– Database lingo: primary key
– May consist of multiple variables (e.g., person × year)
– Gentzkow & Shapiro have a nice discussion

Watch out for numerical issues

– Never store ID variables as float or double
– Instead: int, long, or string

15

Eliminate redundancies

Raw data files often contain redundant information

– County-level file: extra rows for state-wide totals
– Excel spreadsheet: column K is average of C and D

Verify redundancies, then eliminate them

– Make sure the data are internally consistent
– Drop anything you can recompute later

Common scenario: raw data not internally consistent

– Document whatever inconsistencies you discover
– Deal with inconsistencies on a case-by-case basis

16

Keep what you need

Raw data files contain lots of clutter

– Variables you’ll never use
– Messy or gratuitous value labels
– Early years with fatally incomplete data

Keep only what you (1) need and (2) will take the time to clean

– If you’re never going to need it, just drop it
– If you might need it later, either clean it or drop it
– Can always come back later

Main principle: only retain what you can “vouch for”

– Otherwise: liable to use messy variable without knowing it

17

Know your storage types

Where possible, store data in numeric format

– Strings take up way more space
– Example: store education as byte w/values 1, 2, 3, 4
– Attach value label: “<HS”, “HSG”, “SMC”, “CLG”
– Use extended macro functions to extract labels as needed

Understand the available storage types:

– byte: for indicator variables and other small integers
– int: for mid-sized integers
– long: for very large integers
– float: for non-integer numeric values
– double: only if you need the extra precision

Efficient storage types drastically reduce file size

18

Declare if you dare

I explicitly declare byte, int, & long variables

gen byte month = month(td)

gen int year = year(td)

egen long hhid = group(su id hh add)

Advantages:

– Economizes on storage space
– Speeds execution
– Nebulous fear of floating-point issues

Warning: invalid values get silently set to missing!

gen byte ruhroh = 150

assert missing(ruhroh)

If unsure: leave unspecified, then compress

19

Checklist for newly cleaned .dta files

1. Confirm that the data have a unique identifier.

2. Harmonize over time, fix errors, standardize missings . . .

3. Give all variables brief but intelligible names.

4. Explicitly declare storage types, use compress, or both.

5. Store strings as numeric codes with accompanying value labels.

6. Store date/time variables in datetime format.

7. If relevant: tsset or xtset

8. Label every variable. No exceptions!

9. Put the variables in a sensible order, with IDs on top.

10. Sort the data by the unique identifier. (Speeds merges.)

20

data validation

Put your data through their paces

It is incredibly easy to make mistakes in empirical work

– Underlying data are flawed
– Underlying data are not what you think
– Introduce bugs in the course of cleaning

Solution: systematic data validation

– Invariably reveals errors & false assumptions
– If fatal: find better data, ditch project
– If fixable: fix!

Many other substantive benefits:

– Better equipped to answer seminar questions
– Often stumble on new ideas or ID strategies

Goal: give your estimation sample a clean bill of health

21

Set tripwires

Force your code to crash until you work out the kinks

Tremendously important: Stata’s assert command

– Basic idea: code proceeds if true, breaks if false

Several related commands:

– isid (faster gtools version: gisid)
– confirm [new file|numeric|string|variable|...]

– merge (has its own assert() option)
– fillin [varlist] followed by assert fillin == 0

– assertnested for variables that are logically nested
– cf for comparing two datasets
– checksum for verifying file integrity

Pair with capture for error-handling

22

Check logical identities

Valid data satisfy a host of logical restrictions:

– Additive identities (assert pop t == pop m + pop f)
– Sub-additive identities (assert earnings <= totinc)
– Range restrictions (assert wage >= 0 if !mi(wage))
– Time-invariance (bys id (tm): assert sex == sex[1])

Subject your code to many such tests

– Assertions can point the way towards necessary adjustments
– Assertions can document known facts about/issues with data

Keep these assertions turned on: don’t comment out!

– Common situation: add new years of data =⇒ code breaks
– Assertions can reveal that old assumptions no longer hold

23

Sweat the small stuff

Temptation: ignoring “small” bugs

– Issue only applies to a few observations
– Results make sense despite known bug

Most errors are canaries in coal mines

– Misunderstanding the data structure
– Misunderstanding a Stata command

“Small” bugs can easily get amplified

Do not rest easy until you get to the bottom of them

24

Look at the data

Key step in data validation: looking at the actual data

– Look at some individual observations (list in 1/10)
– Look at summary statistics, correlations, ranges, etc.
– Plot the data over time

Some useful descriptive commands:

browse (if using GUI: but servers � GUI), codebook, collapse,
compare, correlate, describe, duplicates, histogram,
inspect, list, regress, summarize, tabulate, tabstat, twoway

Questions to keep in mind:

– Are summary statistics plausible?
– Are cross-tabs/correlations plausible?
– Are time trends plausible? continuous?

25

Visualize the data

Once the data seem reasonably clean, visualize them

– Sensible plots provide reassurance
– Implausible plots help pinpoint problems

Here are a few examples

26

Smooth series should vary smoothly

37

37.5

38

38.5

39

39.5

40

19
84

m
1

19
86

m
1

19
88

m
1

19
90

m
1

19
92

m
1

19
94

m
1

19
96

m
1

19
98

m
1

20
00

m
1

20
02

m
1

20
04

m
1

20
06

m
1

20
08

m
1

20
10

m
1

20
12

m
1

20
14

m
1

Mean age

Source: IPUMS CPS data on prime-age US workers. 27

Cyclical series should track the cycle

.02

.03

.04

.05

.06

.07

.08
19

84
m

1

19
86

m
1

19
88

m
1

19
90

m
1

19
92

m
1

19
94

m
1

19
96

m
1

19
98

m
1

20
00

m
1

20
02

m
1

20
04

m
1

20
06

m
1

20
08

m
1

20
10

m
1

20
12

m
1

20
14

m
1

Share unemployed

Source: IPUMS CPS data on prime-age US workers. 28

Plotting data often reveals data seams

.6

.65

.7

.75

.8

.85
19

84
m

1

19
86

m
1

19
88

m
1

19
90

m
1

19
92

m
1

19
94

m
1

19
96

m
1

19
98

m
1

20
00

m
1

20
02

m
1

20
04

m
1

20
06

m
1

20
08

m
1

20
10

m
1

20
12

m
1

20
14

m
1

Share residing in a metropolitan area

Source: IPUMS CPS data on prime-age US workers. 29

This imputation didn’t work out so well

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000
M

ea
n
 f
am

il
y

in
co

m
e

(2
01

7
U

S
D

)

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Wage/salary income Pre-tax income

Post-tax income

Note: only imputed income is available in 2004-2005.

Mean family income of CEX households

Source: Consumer Expenditure Survey. 30

Hot places should, in fact, be hot

(91.04,105.96]
(88.79,91.04]
(86.47,88.79]
(83.12,86.47]
(79.45,83.12]
[58.23,79.45]

Average daily maximum temperature in August

Source: North American Land Data Assimilation System, 1979–2011. 31

Validate one dataset against another

0

10

20

30

40

50

E
m

p
lo

y
m

en
t−

to
−

p
o

p
u

la
ti

o
n

 (
%

)

1990 1995 2000 2005 2010 2015

QCEW CBP

QCEW vs. CBP employment: California

Source: Quarterly Census of Employment and Wages; County Business Patterns. 32

Suppressed employment in the QCEW
Ringgold County, IA, population 5,131 in the 2010 Census

0

20

40

60

80

100

120

140

T
o

ta
l

em
p

lo
y

m
en

t

20
01

m
1

20
02

m
1

20
03

m
1

20
04

m
1

20
05

m
1

20
06

m
1

20
07

m
1

20
08

m
1

20
09

m
1

20
10

m
1

20
11

m
1

20
12

m
1

20
13

m
1

20
14

m
1

20
15

m
1

20
16

m
1

20
17

m
1

Construction employment: FIPS 19159

Source: Quarterly Census of Employment and Wages. 33

Severe suppressions at the county level

0

200

400

600

800

1000

E
m

p
lo

y
m

en
t

(0
00

s)

19
90

m
1

19
95

m
1

20
00

m
1

20
05

m
1

20
10

m
1

20
15

m
1

Direct State sums County sums

National Employment:
NAICS 22 Utilities
QCEW (1990 − 2017)

Source: QCEW. Figure created by Justin Wiltshire. 34

What to plot varies with the question
Here, we’re interested in understanding county-level seasonality.

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

P
ro

p
o

rt
io

n
 o

f
q

u
ar

te
rs

11 21 22 23 31 42 44 48 51 52 53 54 55 56 61 62 71 72 81

Proportion of total quarters in which employment
is suppressed, by quarter x industry (county FIPS 1133)

Q1 Q2 Q3 Q4 Overall

Source: QCEW. Figure created by Justin Wiltshire. 35

data exploration

36

Start simple, then add complexity

Good causal work requires good descriptive work

Start by looking at the “raw” (cleaned) data

– Levels + changes over time
– Variation across groups

If it’s not there in the raw data, folks tend to be skeptical

– Small effects: plausibly masked by background variation
– Big effects: should show up loud and clear in the raw

Simple plots & tabs are harder to screw up

– Ultimately: full-blown regression/IV/event study
– But don’t start there

36

E.g.: look at events 1-by-1 pre-poolingFigure 3: Double cohorts due to gymnasium reforms

−40

−20

0

20

40

60
10

0
x

lo
g

 g
ra

d
u

at
es

 p
er

 c
ap

it
a

−4 −3 −2 −1 0 1 2

Years relative to double cohort

i. Gymnasium graduates

−40

−20

0

20

40

60

10
0

x
lo

g
 g

ra
d

u
at

es
 p

er
 c

ap
it

a

−4 −3 −2 −1 0 1 2

Years relative to double cohort

ii. Other secondary school−leavers

Hamburg Lower Saxony Bremen

N. Rhine−Westphalia Baden−Wuerttemberg Bavaria

Saarland Berlin Brandenburg

Meck.−Pomm. Saxony−Anhalt

Note: Each series plots log school-leavers per capita. Let P a
st denote the potential age-a population residing in state

s in year t, which I set equal to the observed population of 14-year-olds in year t � (a � 14). For the top panel, I
denominate the number of school leavers by P 19

st in years prior to the double cohort—reflecting the fact that most
gymnasium students graduate at age 19 before the reform—and by P 18

st in years following the double cohort. For the
double cohort year itself, I denominate by 1

2
(P 18

st + P 19
st). For the bottom panel, I denominate the number of school

leavers by P 16
st (since students typically leave lower- and middle-track high schools between the ages of 15 and 17).

173

Figure 3: Double cohorts due to gymnasium reforms

−40

−20

0

20

40

60

10
0

x
lo

g
 g

ra
d

u
at

es
 p

er
 c

ap
it

a

−4 −3 −2 −1 0 1 2

Years relative to double cohort

i. Gymnasium graduates

−40

−20

0

20

40

60

10
0

x
lo

g
 g

ra
d

u
at

es
 p

er
 c

ap
it

a

−4 −3 −2 −1 0 1 2

Years relative to double cohort

ii. Other secondary school−leavers

Hamburg Lower Saxony Bremen

N. Rhine−Westphalia Baden−Wuerttemberg Bavaria

Saarland Berlin Brandenburg

Meck.−Pomm. Saxony−Anhalt

Note: Each series plots log school-leavers per capita. Let P a
st denote the potential age-a population residing in state

s in year t, which I set equal to the observed population of 14-year-olds in year t � (a � 14). For the top panel, I
denominate the number of school leavers by P 19

st in years prior to the double cohort—reflecting the fact that most
gymnasium students graduate at age 19 before the reform—and by P 18

st in years following the double cohort. For the
double cohort year itself, I denominate by 1

2
(P 18

st + P 19
st). For the bottom panel, I denominate the number of school

leavers by P 16
st (since students typically leave lower- and middle-track high schools between the ages of 15 and 17).

173

Source: Price (2017), “Can Local Labor Markets Absorb Crowded Cohorts?
Evidence from German High School Reforms”. PhD dissertation, chapter 4.

37

Beware the curse of dimensionality

Early exploration involves many sample splits/spec choices

– Stratify analysis by sex?
– Stratify analysis by education, age, marital status, . . . ?
– Outcome variable: employment or LFP? logs or levels?
– Weight counties by population? by employment? not at all?
– Which control variables to include?

Result: 2× 4× 2× 2× 3× . . . = too many permutations

– Messy code with 14 nested loops
– Messy file structure with oodles of output
– Hard to get your head around everything

As you introduce new dimensions, collapse some old ones

– Example: if male/female results very similar, pool sexes

38

Separate estimation from presentation

Runtime varies across tasks by orders of magnitude

– Data prep & estimation: usually slow
– Creating figures & tables: always fast

Use “toggles” to control what’s executed
* Set toggles

local run specs = 0

local run figs = 1

[later in script]

* Run specifications

if ‘run specs’ == 1 {
qui reg ‘y’ ‘x’ ‘billion FEs’ in ‘terrifyingly large sample’, robust

[save estimates to disk]

}

* Create figures that would make Edward Tufte proud

if ‘run figs’ == 1 {
[load saved estimates, plot coefficients]

}

39

Saving estimates to disk

Back in the bad old days:

– Run 4-hour regression task, create figures
– Oops, typo in axis title
– Rerun 4-hour regression task, recreate figures

estimates save to the rescue

– Run 4-hour regression task, estimates save, create figures
– Six months later: decide you want to tweak something
– estimates use, then estimates store

– Futz with graphics to your heart’s content

Other use cases:

– Want to renormalize the omitted group (easy with nlcom)
– Want to run a t-test after the fact

40

Estimate, save, load, plot
*--

* Estimate seasonality in unemployment

*--

if ‘run specs’ == 1 {
qui newey lnemp ib12.month tmspline*, lag(12)

qui est save ‘‘$projdir/est/show/aggump/stocks.ster’’, replace

}

*--

* Load estimates into memory

*--

* Get list of saved estimates

local flist : dir ‘‘$projdir/est/show/aggump/’’ files *

* Load saved estimates into active memory

est clear

foreach f of local flist {
local fstub ‘=substr("‘f’", 1, length("‘f’") - 5)’

est use ‘‘$projdir/est/show/aggump/‘f’ ’’

qui est store ‘fstub’

}

*--

* Plot results

*--

* Seasonality in unemployment stock

coefplot stocks [lots of graphical options]

41

From estimation to visualization

estimates save pairs really nicely with coefplot

But that’s for next time . . .

42

Next up

Final lecture rescheduled & relocated

– When: Monday, 12/02 from 3:40–5:00pm
– Where: ARE Library Conference Room (4101 SSH)

Topic: “Sharing Your Work”

– Figures vs. tables
– Making pub-quality figures
– Definitely: designing a slide deck
– Possibly: designing a manuscript

43

until next time

what is all this

fuss and humbug

about ‘data’...?

Powered by tikzducks

