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Best practices for reproducible research

Two interrelated topics:

– “Best practices”

– E�ective workflow

What I want to share:

– High-level principles

– Practical tips
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Plan for today

These slides:

1. Motivation

2. Files & folders

3. Code & data

4. Version control

Ask questions!
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motivation



Why bother?

There are always reasons to neglect best practices

– Looming deadlines

– “I’ll fix it later . . . ”

E�ective workflows do entail upfront costs

But the costs are dwarfed by the benefits

– Be�er research process
– Be�er research product
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Good workflow aids the research process

It saves time

– Less time looking for files

– Less time debugging

– Less duplication of e�ort

It facilitates analysis

– Rapid prototyping

– Ease of exploration

It feels good

– Less frustration

– Less panic

– More pleasure in the cra�
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Good workflow aids the research product

It encourages good science

– More discoveries

– Fewer mistakes

It complements presentation

– Be�er figures & tables

– Ease of answering questions

It has positive spillovers

– Shareable code

– Replication packages

All of which confers professional credibility
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files & folders



A new project

You’re starting a new project

– Might be a solo project

– Might be joint

You have some initial leads

– A question you want to answer

– Data you want to explore

How should you organize your files?
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The project directory

Give the project its own directory

– Completely self-contained

– No external cross-dependencies

Organize it coherently

– Separate files by function

– Choose clear & concise names

– Exploit parallel structure

– Avoid redundancy

– Minimize clu�er

Ensure derived files are traceable back to whatever created them
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A ba�le-tested approach

Four (or more) subdirectories:

– code

– data

– logs

– output

Sometimes add a few more

– models

– packages

– paper

– slides
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A ba�le-tested approach (continued)

Subdivide code by function

– code/build (data preparation)

– code/learn (exploratory analyses)

– code/share (external-facing analyses)

Subdivide data by provenance

– data/raw (data as provided to you)

– data/derived (anything you created)

Use parallel structure & recycle names

– code/clean_data.do ⟹ logs/clean_data.log

– code/learn/timeuse.do ⟹ output/learn/timeuse.pdf
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Use (only) as much hierarchy as you need

Hierarchy should scale with project complexity

– Simple project ⟹ “flat” directory structure

– Complex project ⟹ subdirectories, subsubdirectories . . .

Start simple, elaborate as needed
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code & data



Reproducibility

The “codebase” maps inputs into outputs

– Inputs: raw data

– Outputs: figures, tables, & findings

Reproducibility: rerunning code yields identical output

– At least on your computer

– Ideally on my computer, too

Gold standard: “one-click execution”

– Requires a program like main.do

– Facilitates experimentation

Pitfalls: artifacts, external dependencies, operating systems
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Desiderata

Aside from reproducibility, good code strives for:

– Brevity

– Readability

– Robustness

– Maintainability

– E�icient runtime

– E�icient storage

Sometimes these goals conflict

But usually they’re complementary

– Concise code usually runs faster

– Readable code is easier to maintain
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Coding tips

To achieve these goals:

– Automate extensively

– Comment extensively

– Test your code

– Refine your code

– Learn new tricks

Time spent improving code usually pays for itself
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Managing data

Cardinal rule: never overwrite raw data

– Record when/where you got the data

– Leave raw extracts 100% unmodified

Operate through code, not manually

– Fine to experiment interactively

– But “real” work happens in scripts

Save intermediate files only when necessary

– Usually just clu�er, costly storage

– Look for workarounds
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version control



What is version control?

Version control: a systematic record of revisions to a set of files

– User saves “snapshots” of code & code-like files

– Easy to recover code from any given snapshot

– Saves storage space

– Avoids clu�er

Industry standard is Git

– Usable on its own

– But usually paired with GitHub (or GitLab)
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Learn Git . . . eventually

Git is well worth learning

– Hugely helpful for writing a dissertation

– Widely used in academia, policy, industry

But learning curve is a bit steep

So: start slow & stick with it

– Don’t expect to understand it all at once

– Learn it in bits & pieces

– With time & practice, it’s a game-changer

Lots of good resources online
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concluding thoughts



The big picture

Main message: think (hard) about workflow

Invest early in good habits

– Be organized

– Find ways to improve

– Figure out what works for you

Don’t go it alone

– Talk to your classmates

– Read people’s code

– Get the advice you need

Recommended reading: Gentzkow & Shapiro (2014)

Good luck!
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