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Roadmap

How should economists organize empirical research?

I. Workflow
II. Code

III. Data
IV. Version control

Ecumenical audience:

– RAs, PhD students, faculty
– Language-agnostic
– Related disciplines

Ask questions!
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Prologue: Motivation

Brueghel the Elder, Sloth



Why bother?

Easy to neglect best practices

– Looming deadlines
– “I’ll fix it later . . . ”

Good workflows do entail upfront costs

But they’re dwarfed by the benefits

– Better research process
– Better research product
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Good workflow improves the research process . . .

It saves time

– Less debugging
– Less duplication of effort

It facilitates analysis

– Rapid prototyping
– Ease of exploration
– Reversible choices

It feels good

– Less frustration
– Less panic
– More pleasure in the craft
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. . . and the research product

It promotes good science

– More discoveries
– Fewer mistakes

It complements presentation

– Better figures and tables
– Ease of answering questions

It has positive spillovers

– Shareable code
– Replication packages

All of which confers professional credibility
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Virtuous cycles

Rich complementarities

– Better organization =⇒ simpler code
– Simpler code =⇒ easier to improve
– Faster code =⇒ cheaper analysis
– Cheaper analysis =⇒ deeper dives
– Version control =⇒ safer experimentation

So we should think holistically
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Part I: Workflow

Brueghel the Elder, The Harvesters



Roadmap

I. Workflow
– Reproducibility
– Project organization
– Project life cycle
– Collaboration
– Computing

II. Code

III. Data

IV. Version control



A working definition

Research is reproducible to the extent that

source code and data are sufficient for an outside researcher to
replicate results exactly in a supported computing environment

Intrinsic motivation:

– “Why am I getting different results?”

Extrinsic motivation:

– Increasingly policed
– Prominent retractions
– Journal requirements
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The road to reproducible research

Main principles:

– Do everything in scripts
– Make projects self-contained
– Execute them in one click
– Test in a clean environment

Many pitfalls:

– Revisions to source data
– External dependencies
– Artifacts from previous runs
– Different computer setups
– Ambiguous instructions
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The project directory

Give each project its own directory

– Maximally self-contained
– No gratuitous dependencies
– Install packages internally

Organize it coherently

– Separate files by function
– Use clear and concise names
– Exploit parallel structure

Keep it clean

– Avoid redundancy
– Minimize clutter
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A flexible project template

Four (or more) subdirectories:

– code

– data

– logs

– output

We can add a few more:

– libraries

– models

– paper

Primary script: main.sh (.do, .r, .py, ...)

– Defines the order of execution
– Runs everything in sequence
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A flexible project template (continued)

Subdivide code by function

– code/build (data preparation)
– code/check (data validation)
– code/learn (exploratory analysis)
– code/share (public-facing analysis)

Subdivide data by provenance

– data/raw (data as provided to you)
– data/derived (anything you created)

Use parallel structure, recycle names

– code/harmonize.do =⇒ logs/harmonize.log

– code/learn/emp.do =⇒ output/learn/emp.pdf
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Other organizational principles

Use good nomenclature

– Intelligible
– Concise
– Memorable

Avoid redundancy

– Declare settings/paths/scalars in just one place
– Store repeated code in separate callable scripts

Ensure traceability

– Distinct input files =⇒ distinct outputs
– Should be obvious what generated what

No circularity—directed acyclic graph
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The project life cycle

Typical progression:

– Early: understand data, probe viability
– Later: fine-tune analysis, create nice figures

Project structure should evolve over time

– Reorganize directories
– Revisit nomenclature
– Tie up loose ends

Hierarchy should scale with complexity

– Simple project =⇒ flatter directory structure
– Complex project =⇒ subdirs, subsubdirs, . . .
– Start simple, elaborate as needed
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Leave the campsite better than you found it

Entropy is a fact of life

– Code decays
– Clutter piles up
– Bugs creep in

Streamline as you go

– Clarifies the code logic
– Reminds you what you did
– Controls bug population

Avoid clutter—then declutter

– “But what if I need it later?”
– Stay tuned for version control

13



Plan for a replication package

Common mistake: defer replication to the end

– Waste time revamping
– Scramble to meet deadlines
– Discover mistakes

Keep the end goal in mind

– Will the code meet journal standards?
– Will the code be runnable by a replicator?
– Will the code be useful to others?
– Does it look professional?

Stringent standard: American Economic Review

14

https://www.aeaweb.org/journals/data/data-code-policy


Getting along (is hard to do)

Collaborative work =⇒ added challenges

– Code works for me, crashes for you
– I edit a script, it messes with your analysis
– I can’t read your code, you can’t read mine

Three viable approaches:

– Designated coder: one person touches the code
– Partnership: multiple equal coders
– Surgical team: primary coder + others
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Which approach?

Tailor to team and project

– Coding ability, attention to detail
– Comparative advantage, bandwidth
– Access to data, computing resources
– Project complexity, optimal language
– Interpersonal dynamics

Multiple coders =⇒ all the more vital to

– Use version control
– Adopt uniform conventions and style
– Be mindful of computing environments
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Research computing

Invest in a good primary language

– Stata: great for economics—but costly, narrow
– R: increasingly popular—but many dialects
– Python: versatile, all-purpose—but newer to econ

Supplement with the shell?

– Pro: useful lightweight utilities
(preprocess text, scrape web, append pdfs)

– Con: reliance on OS impedes shareability

Highly recommended: Visual Studio Code

– Superb editing (syntax highlighting, multi-cursors)
– Integrated terminals, support for Git and LATEX
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VSCode: integrated terminal running Stata
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VSCode: integrated LATEX compilation
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Go remote?

You may have access to a research server

Many pros . . .

– Faster processing
– Persistent sessions
– Shared access
– Regular backups

. . . but some cons

– Reliance on internet
– Server downtime
– Limited privileges
– May be harder to use GUIs
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Learn a little Linux

Most servers run Linux∗—so know the basics

– Navigation: pwd, cd, ls, cp, mv, rm, mkdir
– Permissions: chmod, chown, chgrp, umask
– Search and substitution: find, grep, sed
– Miscellaneous utilities: cat, echo, head, less
– Existential questions: whoami, whatis man

Powerful combos using pipes, I/O redirection, etc.

– Locate files containing a given string:
find haystack -name ‘*.py’ -exec grep ‘needle’

– Create a sorted list of lines containing a given string
cat counties.txt | grep ‘Ohio’ | sort > oh.txt

*MacOS is derived from Unix, so many Linux commands work here too. 21



Part II: Code

Brueghel the Elder, The Tower of Babel



Roadmap

I. Workflow

II. Code
– Desiderata
– Abstraction
– Readability
– Development
– Optimization

III. Data

IV. Version control



Desiderata

Good code is . . .

– Concise
– Readable
– Robust
– Maintainable
– Extensible
– Efficient

These goals are often complementary

– Concise code runs faster
– Readable code is easier to maintain

Philosophy of continuous improvement
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The root of all evil

The road to hell is paved with repetitive code

– Cut-and-paste within files
– Recycling across files

Curse of dimensionality

– Many groups (2 sexes × 3 age bins × . . . )
– Many specs (raw, controls, FEs, more FEs . . . )
– =⇒ Exponential growth

The horror, the horror

– Miserable to read, verify, debug
– Costly, error-prone to modify, extend
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Automate repeated code

Abstract from repeated elements

– Encase repeated code blocks in loops
– Store repeated strings in macros
– Move repeated functionality into subroutines

Find the common threads

– Substantial overlap between a, b, c
– Loop over a, b, c
– Use conditionals to handle non-overlaps

Slimmer code, clearer logic
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Abstraction in action

Source: Price and Wasserman (2022). 25



Don’t hardcode

Hardcoding = writing a literal instead of a variable

– User-specific filepaths
– Start/end of sample period
– Income thresholds

Main problem: multiple instances

– Annoying to change
– Hard to track down
– Hard to keep in sync

Obscures the logic, impedes readability

Instead: define variables in prominent places

– main.do, file header, params.txt
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Write readable code

Readable code is easier to . . .

– Understand
– Debug
– Maintain
– Extend

The basic ingredients:

– Brevity balanced with clarity
– Good nomenclature
– Clear documentation
– Stylistic consistency
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Be brief . . .

“Omit needless words.”—Strunk and White

– Less to read, search, maintain, debug
– Better starting point for recycles

Tips for brevity:

– Automate extensively
– Look for one-liners
– Cut vestigial code

Fluency pays, as in this Stata example:

merge pid using cps.dta

assert merge == 2 | merge == 3

keep if merge == 3

drop merge

=⇒ merge pid using cps.dta, assert(2 3) keep(3) nogen
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. . . but not overly brief

This is good:

gen sep type = .

replace sep type = 1 if sep == 1 & unemp == 1

replace sep type = 2 if sep == 1 & nlf == 1

This is more compact, but harder to read:

gen sep type = 1 if sep == 1 & unemp == 1

replace sep type = 2 if sep == 1 & nlf == 1

And clever one-liners are not always best:

gen sep type = unemp + 2 * nlf if sep == 1
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Exploit visual parallels

Visually aligned code is easier to read:∗

gen topcode = .

replace topcode = 999 if inrange(year, 1982, 1988)

replace topcode = 1923 if inrange(year, 1989, 1997)

replace topcode = 2884.61 if inrange(year, 1998, .)

Compare:
gen topcode = 999 if inrange(year, 1982, 1988)

replace topcode = 1923 if inrange(year, 1989, 1997)

replace topcode = 2884.61 if year >= 1998

Give related variables same prefixes, equal-length names

– Standardized prefixes =⇒ easy wildcard matching
– Standardized length =⇒ visual alignment

*Multiple spaces pair poorly with tab-indented code, since text editors expand tab indents to differing numbers of spaces. 30



Balance number vs. length of scripts

Each script should form a logical whole

– Unit of execution
– Locus of comprehension

More files or long files?

– Clutter vs. clarity
– Modular execution
– Ease of tracing version history

Rule of thumb: >500 lines feels long
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A distribution of script lengths

Looked at a recent project . . .
find ./code -name ’*.do’ -exec wc -l {} | sort

Out of 39 code files:

– 12 files in code/build, 27 files in code/share

– 6 files under 100 lines, 2 files over 500 lines

My central tendency is 100–300 lines

Personal preference—but avoid bloat
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Document for structure and clarity

Include a file header

– Purpose of the file
– Dependencies, caveats, known issues
– Version control handles author, date

Use section headers

– Breaks code into visually distinct units

Write informative comments

– Tautologous: * Keep data from 1994 onward

– Enlightening: * Keep data post-CPS redesign

Maintain comments as you would code

– Otherwise: code/comments contradict
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Adopt a consistent style

Style encompasses:

– Naming conventions
– White space conventions
– Command abbreviations
– Preferred commands, approaches

No arguing about taste . . . but be consistent

– Easier to read own, others’ code
– Easier to search for strings/patterns
– Easier to remember object names
– Easier to recycle across projects

Find a style guide for your language
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Developing code

Sometimes makes sense to start rough . . .

– Ephemeral code
– Prototyping
– Time pressure
– Learning a new language

. . . but polish sooner rather than later

– Interactive → scripted
– Repetitive → automated
– Hardcoded → flexible
– Inefficient → optimized

Edit, edit, edit
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Optimizing code

Two goals: efficient runtime, efficient storage

Theoretical trade-offs . . . but be on the Pareto frontier

– Space seldom binds
– But big files are slow and unwieldy

Locate and address bottlenecks

– Gentzkow and Shapiro: “profile slow code relentlessly”
– Develop a feel for fast and slow
– Use timers to record execution time
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The need for speed

The sloth’s excuse: “I’ll only run it once”

Lots of reasons to rerun code:

– Ensuring it still works
– Incorporating new data
– Revisiting choices
– Purging artifacts
– Recycling across projects

Faster code =⇒ quicker iteration

– Editing for readability
– Cleaning additional variables
– Modifying sample restrictions
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Quicker code

Structure the data for speed

– Use minimal storage types
– Sort with an eye to future merges
– Operate on aggregates when you can

Leverage language

– Find faster commands, paradigms
– Farm out slow tasks to a faster language

Use intermediate files (judiciously)

– Store slow-to-build extracts
– Store regression estimates

Toggle slow code on/off (via flags, not comments)
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Part III: Data

Brueghel the Elder, Hunters in the Snow



Roadmap

I. Workflow

II. Code

III. Data
– Provenance
– Data preparation
– Data validation
– Data analysis

IV. Version control



Provenance

Keep track of data provenance

– So you can re-download if needed
– So replicators can retrace your steps

Record where/how you got the source data

– Website linking to data extracts
– Exact URLs for direct downloads
– Instructions for navigating interface
– Accompanying documentation

Record when you got the data

– In case you later lose access
– In case data are revised over time
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Protect the raw data

Keep the raw data pristine

– Store separately from derived files
– Never overwrite raw data(!)
– Limit and document file renames

(but fine to store compressed)

Rare exception: prohibitively large files

– Retain subset of observations or variables
– Codify steps to downsize file
– Preprocess no more than necessary
– Save smaller file

Apart from that: clean only via code
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Data preparation

Understand the data structure

– Unique identifiers
– Hierarchical relationships
– Completeness, missings
– Redundancies

Simplify and restructure

– Get rid of clutter
– Deal with inconsistencies
– Harmonize variables
– Improve nomenclature

Store cleaned extracts
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Keep what you need

Raw data files contain lots of clutter

– Variables you’ll never use
– Messy or gratuitous labels
– Early years with incomplete data

Keep what you need—and will bother to clean

– Economize on space (and speed)
– Retain what you can vouch for
– Can always reintroduce later
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Eliminate redundancies

Raw data often contain redundant information

– Extra rows for state-wide totals
– Transformations of other variables

Verify redundancies, then eliminate them

– Make sure the data are internally consistent
– Drop anything you can recompute later

What if the data aren’t internally consistent?

– Document any inconsistencies you find
– Deal with them on a case-by-case basis
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Create clean extracts

Construct a minimal set of derived extracts

– Semi-cleaned extracts for data validation
– Fully cleaned extracts ready for estimation

Invest in high-quality extracts

– Unique identifiers
– Efficient data structures
– Clear, concise names and labels
– Sort by the unique IDs

Defer niche data processing further downstream

– Store emp—but compute ln(emp) on the fly
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Data validation

It’s (really) easy to make mistakes

– Raw data are wrong
– Raw data are right, but not what you think
– Typos, bad merges, floating-point issues . . .

Solution: systematic data validation

– Reveals errors and false assumptions
– The sooner the better

Side benefits:

– Be better equipped to answer seminar questions
– Stumble on new ideas or identification strategies
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Sweat the small stuff

Temptation: ignoring “small” bugs

– Issue only applies to a few observations
– Results make sense despite known bug

Most errors are canaries in coal mines

– Misunderstanding the data
– Misunderstanding the language

“Small” bugs often get amplified

Do not rest easy till you sort them out
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Set tripwires

Data entail logical restrictions

– Additivities (population = sum across ages)
– Valid ranges (0 ≤ earnings ≤ income)
– Time invariance (birth state is fixed)

Set “tripwires”: code crashes if an assertion fails

– Check your understanding of the data
– Document when identities do/don’t hold

(assert popt == popm + popf if year >= 2003)

Keep tripwires on—not commented out

– Old assumptions may cease to hold
– Add new data, redefine sample, update package . . .
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Know thy data

Look at the data!

– Browse individual observations
– Inspect means, SDs, correlations
– Plot the data over time

Ask yourself:

– Are the patterns plausible?
– Are there breaks in the data?
– Are there anomalies or outliers?
– Do expected features manifest?
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Smooth series should evolve smoothly

Source: IPUMS CPS data on prime-age US workers. 49



Hot places should be hot

Source: North American Land Data Assimilation System, 1979–2011. 50



Plotting the data often reveals data seams

Source: IPUMS CPS data on prime-age US workers. 51



Validate one dataset against another

Source: Quarterly Census of Employment and Wages; County Business Patterns. 52



Visualize data suppressions

Source: Quarterly Census of Employment and Wages. 53



Examine data at different levels of aggregation

Source: Quarterly Census of Employment and Wages. 54



Lower the marginal cost of data analysis

Effective workflows yield . . .

– Quicker turnaround
– Fewer mistakes

Benefits scale with project complexity, duration
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Quicker turnaround

Best practices save you time

– Automation =⇒ coding time
– Optimization =⇒ computational time
– Organization =⇒ search time

Faster turnaround means . . .

– Cheaper data exploration
– Easier analytical modifications
– Less slog, more momentum
– Timelier feedback

Especially important with big, hard-to-access data
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Fewer mistakes

Mistakes are costly if discovered . . .

– Backtracking, lost time
– Embarrassment, lost credibility
– Journal rejection, retraction

. . . but also if undiscovered

– Promising pilot flops at scale
– Measurement error attenuates result
– Erroneous science shapes the debate

Avoid unforced errors
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Part IV: Version control

Brueghel the Elder, Big Fish Eat Little Fish



Roadmap

I. Workflow

II. Code

III. Data

IV. Version control
– Version chaos
– Version control in a nutshell
– Version control benefits
– Learning Git



Version chaos

We’ve all done it:

– atus v1.do, atus v17.do, ./v3/atus.do
– cps bp.do, cps FINAL bp.do, cps jul bbag.do

Confusion, error, terror, and strife

– Which version is authoritative?
– Who changed this? When?? WHY???
– How was the directory organized as of July?
– How does v3 of one file relate to v3 of another?
– When should I create a new version?
– Do I dare disturb the universe?

Even worse: multiple authors, machine migration
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Poor man’s version control

You might choose to go low-tech

– Git is unavailable
– Git is too hard(?!)
– Coauthors sharpening pitchforks

If you must: good organization helps

– Coherent, stable directory structure
– Readable, streamlined code

Archive the entire codebase at key junctures

– Rerun everything to ensure it’s in sync
– Keep everything lightweight (code, logs, output)
– Apply a sortable date-stamp (YYYYMMDD)
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Actual version control

Version control: a record of revisions to a set of files

– User saves snapshots of code and related files
– Easy to recover code from any given snapshot
– Easy to see how, when, by whom a file was edited
– Ideal for both solo and collaborative work

Everybody uses Git

– Versatile, reliable, fast, space-efficient

Usually paired with GitHub or GitLab

– Syncing across users, devices
– Discussion threads, project management
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Some Git lingo

repository: a project containing version-controlled files

clone: a copy of the repo containing full project history

– Local clone on each coder’s machine
– Remote clone on GitHub or GitLab

tracking: designating a (code) file for inclusion in the repo

commit: a snapshot of all tracked files at a particular time

pushing: uploading commits to GitHub/GitLab

pulling: downloading commits from GitHub/GitLab
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The basic Git workflow

Initial configuration

– Set up a project directory as usual
– Initialize a Git repo (creates hidden .git)
– Link it to GitHub or GitLab

Commit and push an initial set of files

– Commit ID, author, timestamp, commit message

Further commits

– Create and edit files as usual
– Commit what/when you want to
– Tell Git what to ignore (derived files)

Inspect or revert to old versions as needed
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A sample Git log

Source: Price and Wasserman (2022). 63



Meet Mr. 81a4c0f

Source: Price and Wasserman (2022). 64



The latest version: tracked files only

Source: Price and Wasserman (2022). 65



The latest version: including derived files

Source: Price and Wasserman (2022). 66



The perks of version control

Main benefit: code retrieval

– Organized archiving
– Convenient backups

Side benefit: lineage tracing

– Find all edits made to a given file
– Trace file, folder renames

Made for collaboration

– Work independently, merge together
– Link discussions to specific commits
– Share repos with the research community
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Version control =⇒ better code

It promotes leanness

– Delete whatever you don’t need now
– Easy to rerun code in a fresh clone

It disciplines your coding

– Workflow encourages modular thinking
– Easy to review edits before committing
– Easy to reverse mistakes
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The power of the diff

Source: Price and Wasserman (2022). 69



How to learn Git

Git is well worth learning

– Hugely helpful for writing a dissertation
– Widely used in academia, policy, industry

Learning curve is a bit steep

– Start slow, stick with it
– Try it out in a solo project
– Over time: learn new tricks

Lots of good resources online

– But befriend an emergency contact
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Postscript

Brueghel the Elder, The Land of Cockaigne



The big picture

Main message: think (hard) about workflow

Invest early in good habits

– Be organized
– Find ways to improve
– Figure out what works for you

Don’t go it alone

– Talk to your classmates
– Read people’s code
– Get the help you need

“Break any of these rules sooner than say anything outright
barbarous.”—George Orwell, Politics and the English Language
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Further reading

Coding:

– Code and Data for the Social Sciences: A Practitioner’s Guide,
Matthew Gentzkow and Jesse Shapiro

– Coding for Economists, Ljubica Ristovska
– Coding Style Guide, Michael Stepner
– Best Practices for Computer Programming in Economics,

Tal Gross

Version control:

– Git for Economists, Frank Pinter
– Pro Git, Scott Chacon and Ben Straub
– Version Control with Git, Jon Loeliger and Matthew McCullough

Plenty more at www.brendanmichaelprice.com
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https://web.stanford.edu/~gentzkow/research/CodeAndData.pdf
https://scholar.harvard.edu/files/ristovska/files/coding_for_econs_20190221.pdf
https://github.com/michaelstepner/healthinequality-code/blob/main/code/readme.md
https://sites.bu.edu/talgross/files/2017/08/good-stata-habits.pdf
https://www.frankpinter.com/notes/git-for-economists-presentation.pdf
https://git-scm.com/book/en/v2
http://shop.oreilly.com/product/0636920022862.do
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